Conformationally Rigid Diamide Complexes: Synthesis and Structure of Tantalum(III) Alkyne Derivatives[†]

Frédéric Guérin, David H. McConville,* and Jagadese J. Vittal

Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7

Received April 11, 1995[®]

Summary: The chelating diamide complexes mer-Ta Cl_3 -(BDPP) (2), mer-TaCl₃(BDPP) (3), and (BDPP)Ta(η^2 - $RC \equiv CR$)Cl (4a, R = Pr; 4b, R = Et; 4c, R = Ph) (BDPP) $=2,6-(ArNCH_2)_2-NC_5H_3$; $Ar = 2,6-iPr_2-C_6H_3$), have been prepared. Proton and carbon NMR data suggest that the alkynes in 4a-c rotate rapidly on the NMR time scale. An X-ray study of $(BDPP)Ta(\eta^2 - PrC = CPr)Cl(4a)$ revealed a distorted-square-pyramidal geometry with the chloride occupying the apical position.

Certain group 5 metal complexes are active catalysts for the polymerization and cyclization of alkynes.¹⁻⁴ The polymerization of alkynes can occur by two different pathways: cycloaddition of an alkyne to a carbene to yield a vinylcarbene upon ring-opening⁵ and the insertion of an alkyne into a metal-carbon bond.⁶ Complexes of the type $L_n Ta(\eta^2 - RC \equiv CR)X$ (X = alkyl, hydride, $chloride)^{7-10}$ are ideally suited for studying the latter mechanism. Cyclization reactions are highly dependent on the steric and electronic properties of the ancillary ligands. For example, the two-electron reduction of $(DIPP)_2TaCl_3(OEt_2)$ (DIPP = 2,6-diisopropylphenoxide) in the presence of excess 3-hexyne yields the arene complex $(DIPP)_2Ta(\eta^6-C_6Et_6)Cl$ and hexaethylbenzene.⁴ Under similar conditions the complex (DIPP)₃-TaCl₂(OEt₂), which bears one additional bulky alkoxide ligand, yields only the metallacyclopentadiene complex $(DIPP)_{3}Ta(C_{4}Et_{4})$.¹¹ A flexible ligand array is common to the complexes mentioned above. Our interest in the steric and electronic effects of conformationally rigid ligands led us to explore the synthesis of bulky chelating diamide ancillaries,¹²⁻¹⁴ in particular, amides which bear the voluminous 2,6-diisopropylphenyl moiety. We

(7) Labinger, J. A.; Schwartz, J.; Townsend, T. M. J. Am. Chem. Soc. 1974, 96, 4009.

(8) Green, M. L. H.; Jousseaume, B. J. Organomet. Chem. 1980, 193, 339

(9) Gibson, V. C.; Parkin, G.; Bercaw, J. Organometallics 1991, 10, 220.

- (10) Chao, Y.-W.; Wexler, P. A.; Wigley, D. E. Inorg. Chem. 1989, 28, 3860.
- (11) Strickler, J. R.; Wexler, P. A.; Wigley, D. E. Organometallics **1991**, *10*, 118.
- (12) Cai, S.; Schrock, R. R. Inorg. Chem. 1991, 30, 4106.
- (13) Kol, M.; Schrock, R. R.; Kempe, R.; Davis, W. M. J. Am. Chem. Soc. 1994, 116, 4382.

(14) Schubart, M.; O'Dwyer, L.; Gade, L. H.; Li, W.; McPartlin, M. Inorg. Chem. 1994, 33, 3893.

0276-7333/95/2314-3154\$09.00/0

report here the synthesis of monoalkyne complexes of tantalum stabilized by a new conformationally rigid diamide ligand.

2,6-Bis(bromomethyl)pyridine¹⁵ was treated with 2equiv of LiNAr(SiMe₃)¹⁶ to yield the silvlated ligand precursor BDPP(SiMe₃)₂ $(1)^{17}$ as a white crystalline solid (eq 1).

$$2\text{LiNAr}(\text{SiMe}_3) + 2,6-(\text{BrCH}_2)_2\text{-NC}_5\text{H}_3 \xrightarrow{-40 \text{ to } +25 \text{ °C/DME}}{-2\text{LiBr}}$$

$$2,6-[\text{NAr}(\text{Me}_3\text{Si})\text{CH}_2]_2\text{-NC}_5\text{H}_3 \qquad (1)$$
1

 $BDPP(SiMe_3)_2$ reacts cleanly with $TaCl_5$ to give 2 equiv of ClSiMe₃ (confirmed by ¹H NMR spectroscopy) and the yellow trichloride complex mer-(BDPP)TaCl₃(2) in high yield (eq 2).

$$BDPP(SiMe_3)_2 + TaCl_5 \xrightarrow{80^{\circ}C / C_6H_6}_{- 2 CISiMe_3} \xrightarrow{NAr}_{- CI} (2)$$

Proton and carbon NMR spectra¹⁸ of complex 2 are consistent with a meridional coordination of the ligand, as evidenced by the singlet observed at 5.84 ppm for the methylene protons (CH_2N) of the BDPP unit. Interestingly, the isopropyl methyl groups of the arene are diastereotopic, which we interpret as a consequence of restricted rotation about the $N-C_{ipso}$ bond. The proton NMR spectrum of complex 2 remains unchanged at 80 °C.

Compound 2 can be alkylated with 3 equiv of MeMgBr to give the trimethyl derivative $mer-(DBPP)TaMe_3$ (3). in good yield (eq 3; RT = room temperature).

mer-(BDPP)TaCl ₃ + 3MeMgBr	Et ₂ O/RT -3CIMgBr mer-(BDPP)TaMe ₃	(3)
2	3	

(15) A CH_2Cl_2 solution of 2,6-bis(bromomethyl)pyridine HBr was extracted with saturated NaHCO₃ to yield 2,6-bis(bromomethyl)-pyridine. Haeg, M. E.; Whitlock, B. J.; Whitlock, H. W., Jr. J. Am. Chem. Soc. 1989, 111, 692.

© 1995 American Chemical Society

⁺ Dedicated to the memory of Professor Kenneth G. Rutherford.

[®] Abstract published in Advance ACS Abstracts, June 1, 1995. (1) Cotton, F. A.; Hall, W. T.; Cann, K. J.; Karol, F. J. Macromol-

ecules **1981**, *14*, 233. (2) Masuda, T.; Isobe, E.; Higashimura, T.; Takada, K. J. Am. Chem.

 ⁽²⁾ Masuda, 1, 2005, 2, 1, 10
 Soc. 1983, 105, 7473.
 (3) Masuda, T.; Niki, A.; Isobe, E.; Higashimura, T. Macromolecules 1985, 18, 2109.

⁽⁴⁾ Bruck, M. A.; Copenhaver, A. S.; Wigley, D. E. J. Am. Chem.

 ⁽⁴⁾ Bluck, M. A., Copennaver, A. S., Wigley, D. D. J. M. Chen.
 Soc. 1987, 109, 6525.
 (5) Katz, T. J.; Ho, T. H.; Shih, N.; Ying, Y.; Stuart, V. I. W. J. Am.
 Chem. Soc. 1984, 106, 2659.
 (6) Taqui Kahn, M. M.; Martell, A. E. Homogeneous Catalysis by

Transition Metal Complexes; Academic Press: New York, 1974; Vol. II.

⁽¹⁶⁾ Kennepohl, D. K.; Brooker, S.; Sheldrick, G. M.; Roesky, H. W. Chem. Ber. 1991, 124, 2223. (17) BDPP(SiMe₃)₂ (1): ¹H NMR (C₆D₆, 300 MHz) δ 7.15 (t, 2H, Ar),

⁽¹⁷⁾ BDPP(SiMe_{3}_{2}(1): ¹H NMR (C_6D_6, 300 MHz) δ 7.15 (t, 2H, Ar), 7.02 (d, 4H, Ar), 6.48 (t, 1H, py), 6.47 (d, 2H, py), 4.28 (s, 4H, NCH₂), 3.31 (sept, 4H, CHMe_{2}), 1.17 (d, 12H, CHMe_{2}), 0.90 (d, 12H, CHMe_{2}), 0.27 (s, 18H, SiMe_3); ¹³C{¹H} NMR δ 159.88, 148.69, 143.40, 135.88, 126.30, 124.24, 122.28, 58.78, 27.94, 25.18, 1.06; MS (EI) m/z 601.423 (M⁺), calcd for C₃₇H₅₉N₃Si₂ 601.424. (18) mer-(BDP)TaCl₃(2): ¹H NMR (C₆D₆, 300 MHz) δ 7.14 (m, 6H, Ar), 6.84 (t, 1H, py), 6.38 (d, 2H, py), 5.84 (s, 4H, NCH₂), 3.80 (sept, 4H, CHMe₂), 1.52 (d, 12H, CHMe₂), 1.12 (d, 12H, CHMe₂); ¹³C{¹H} NMR δ 161.64, 148.84, 146.56, 139.66, 125.35, 122.28, 117.51, 71.78, 28 89, 27.57 23 64 Angl Calcd for C₃·H₂·NTaCle⁻ C, 50.11; H 5.56;

^{28.89, 27.57, 23.64.} Anal. Calcd for C31H41N3TaCl3: C, 50.11; H, 5.56; N, 5.66. Found: C, 50.25; H, 5.68; N, 5.11.

Communications

The proton and carbon NMR spectra¹⁹ of compound 3 suggest that the meridional coordination of the BDPP ligand is retained. Furthermore, two different Ta-Me groups are observed: one trans to the pyridine of the BDPP unit and two cis. A similar restricted rotation about the N-C_{ipso} bond is proposed on the basis of the presence of diastereotopic isopropyl methyl groups. Other metathetical reactions involving larger alkylating reagents (e.g., PhCH2MgCl and Me3SiCH2Li) yield intractable materials.

The reduction of mer-(BDPP)TaCl₃ with excess Na/ Hg in the presence of alkynes yields the pseudo fivecoordinate Ta(III) derivatives (BDPP)Ta(η^2 -RC=CR)Cl (4a, R = Pr; 4b, R = Et; 4c, R = Ph) (eq 4).

A single low-field acetylenic carbon resonance is observed in the ¹³C{¹H} NMR spectra²⁰ of complexes 4a-c, suggesting that the alkyne acts as a four-electron donor.²¹ The BDPP methylene protons (CH_2NAr) are diastereotopic in the ¹H NMR spectra of complexes 4a- \mathbf{c} , indicating some asymmetry above and below the N_3 plane of the ligand. However, the presence of two isopropyl methine and four isopropyl methyl resonances in the proton and carbon NMR spectra of complexes 4a-c again supports the notion of a restricted rotation about the N-Cipso bond. Given the above-mentioned asymmetry of the ligand and since both ends of the coordinated alkynes are equivalent by ¹H and ¹³C{¹H} NMR spectroscopy, a rapid rotation of the alkynes on the NMR time scale is advanced.

Yellow single crystals of (BDPP)Ta(η^2 -PrC=CPr)Cl (4a) suitable for an X-ray analysis were grown from a saturated ether solution at -30 °C.²² The molecular structure of complex 4a is shown in Figure 1, and selected bond distances and angles are given in Table 1. Overall, the molecular structure is best described as a distorted square pyramid with the chloride (Cl(1)) occupying the apical position. The 4-octyne unit is located trans to the pyridine of the BDPP ligand and is rotated by 50° with respect to the Cl(1)-Ta(1)-N(2) plane (Figure 1, bottom). The bond distances in the Ta-

Figure 1. (top) ORTEP drawing of (BDPP)Ta(η^2 -PrC=CPr)-Cl(4a) with thermal ellipsoids at the 50% probability level. Three orientations of C(30) and C(31) were located in the final difference Fourier map. (bottom) Chem 3D Plus representation of the core of 4a.

Table 1. Selected Bond Distances (Å) and Angles (deg) for (BDPP)Ta(η^2 -PrC=CPr)Cl (4a)

	Bond D	istances	
Ta(1) - N(1)	2.053(6)	Ta(1) - N(2)	2.255(6)
Ta(1) - N(3)	2.033(6)	Ta(1) - Cl(1)	2.361(2)
Ta(1) - C(32)	2.062(7)	Ta(1) - C(36)	2.085(7)
C(32)-C(36)	1.287(11)	C(32) - C(33)	1.527(9)
C(36) - C(37)	1.522(8)	$Acet^*-Ta^a$	1.97
	Bond	Angles	
N(3) - Ta(1) - N(1)	137.2(2)	N(1) - Ta(1) - N(2)	71.4(2)
N(3) - Ta(1) - N(2)	71.9(2)	N(1) - Ta(1) - Cl(1)	106.6(2)
N(2) - Ta(1) - Cl(1)	93.7(2)	N(3) - Ta(1) - Cl(1)	96.9(2)
C(36) - C(32) - C(33)	132.6(8)	C(32)-C(36)-C(37)	137.2(8)
C(1) - N(1) - Ta(1)	126.3(5)	C(1) - N(1) - C(7)	108.7(5)
C(7) - N(1) - Ta(1)	124.5(5)	C(14)-N(3)-C(13)	109.3(6)
C(14) - N(3) - Ta(1)	130.2(5)	C(13) - N(3) - Ta(1)	120.4(5)

^{*a*} Acet^{*} = midpoint of C(32)-C(36).

alkyne moiety are comparable to those reported for other mononuclear Ta(III) alkyne complexes.11,23-25

⁽¹⁹⁾ mer-(BDPP)TaMe3 (3): 1H NMR (C6D6, 300 MHz) & 7.14 (m, (TaCH₃), 65.80 (TaCH₃), 28.44, 27.46, 23.95. Anal. Calcd for $C_{34}H_{50}N_3$ -Ta: C, 59.90; H, 7.39; N, 6.16. Found: C, 59.43; H, 7.35; N, 5.73. (20) (BDPP)Ta(η^2 -PrC=CPr)Cl (4a): ¹H NMR (C_6D_6 , 300 MHz) δ

^{7.19 (}t, 2H, Ar), 7.13 (d, 4H, Ar), 6.85 (t, 1H, py), 6.39 (d, 2H, py), 5.12 (AB quartet, ${}^{2}J_{HH} = 20.1$, 4H, NCH₂), 3.79 (sept, 2H, CHMe₂), 3.15 (sept, 2H, CHMe₂), 2.51 (m, 4H, \equiv CCH₂), 1.46 (d, 6H, CHMe₂), 1.34 (m, 4H, CH₂CH₃), 1.32 (d, 6H, CHMe₂), 1.24 (d, 6H, CHMe₂), 1.01 (d, 6H, CHMe₂), 0.84 (t, 6H, CH₂CH₃); ¹³C{¹H} NMR δ 237.01 (C=C), 160.77, 154.41, 145.19, 138.41, 125.49, 124.32, 123.57, 116.99, 70.95, 40.02, 28.60, 27.95, 26.66, 25.76, 24.61, 23.80, 21.94, 15.45. Anal. Calcd for C₃₉H₅₅N₃TaCl: C, 59.88; H, 7.09; N, 5.37. Found: C, 59.62; H, 7.19; N, 5.16. Spectroscopic details for compounds 4b and 4c are available in the supporting information.

⁽²¹⁾ Templeton, J. L.; Ward, B. C. J. Am. Chem. Soc. 1980, 102, 3288

⁽²²⁾ X-ray data for (BDPP)Ta(η^2 -PrC=CPr)Cl (4a): Data were collected at 23 °C on a Siemens P4 diffractometer using graphitemonochromated Mo Ka radiation. A total of 6078 reflections were collected in the θ range 1.9–23°, of which 5179 were unique (R_{int} = 0.0284). The structure was solved by a combination of Patterson and difference Fourier techniques. Non-hydrogen atoms were refined anisotropically, except C(30) and C(31), which were refined isotropi-9.936(2) Å, b = 11.558(1) Å, c = 17.689(2) Å, $\alpha = 74.997(6)^{\circ}$, $\beta = 87.424$ -(10)°, $\gamma = 75.372(9)°$, V = 1898.0(5) Å³, space group $P\overline{1}$, Z = 2, mol wt 792.36, and ϱ (calcd) = 1.386 g/cm³. (23) Cotton, F. A.; Hall, W. T. *Inorg. Chem.* **1980**, *19*, 2352.

Each amide is sp²-hybridized, as evidenced by the sum of the angles about each nitrogen (N(1) = 359.5° and N(3) = 359.9°). The rigid coordination of the ligand and enforced location of the aryl isopropyl groups creates a "pocket" opposite the pyridine and necessarily protects the metal above and below the N₃ plane.

Finally, we are also exploring the catalytic activity of derivatives of complex 4a.²⁶ The alkyl complexes (BDPP)Ta(η^2 -PrC=CPr)R (R = alkyl), where the apical chloride has been replaced with an alkyl group, are being pursued as alkyne polymerization catalysts.¹⁻³ In addition, we are exploring the catalytic alkyne cyclization^{1,4} reactivity of *in situ* prepared cationic derivatives (e.g., $[(BDPP)Ta(\eta^2-PrC=CPr)]^+)$.

Acknowledgment. This work was supported by the NSERC (Canada) and a University of Western Ontario Internal Research Grant (to D.H.M.).

Supporting Information Available: Text giving experimental details for compounds 1-3 and 4a-c and tables of crystal data, data collection details, final positional parameters, all bond distances and angles, torsion angles, and least-squares planes for 4a (15 pages). Ordering information is given on any current masthead page.

OM950257J

⁽²⁴⁾ Smith, G.; Schrock, R. R.; Churchill, M. R.; Youngs, W. J. Inorg. Chem. 1981, 20, 387.

⁽²⁵⁾ Curtis, M. D.; Real, J.; Hirpo, W.; Butler, W. D. Organometallics
1990, 9, 66.
(26) Guérin, F.; McConville, D. H., to be submitted for publication.