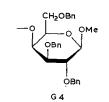
Note

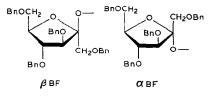
Synthesis of 2-amino-2-deoxy-α-D-glucopyranosyl β-D-fructofuranoside (2amino-2-deoxysucrose) via Koenigs-Knorr reaction*

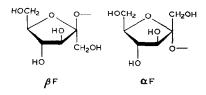
SHINKITI KOTO[†], SHIGERU INADA, HIROKI OGAWA, AND SHONOSUKE ZEN School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108 (Japan) (Received January 15th, 1982; accepted for publication, February 7th, 1982)

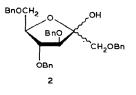
The yellow 3,4,6-tri-O-acetyl-2-deoxy-2-(2,4-dinitroanilino)- α -D-glucopyranosyl bromide¹ (1) was used in Umezawa's first synthesis of an antimicrobial aminoglycoside². Subsequently, 1 was utilized in the synthesis of various 2-amino-2-deoxy- α -D-glucopyranosides³. The usefulness of 1 was recently shown in glycosylation of the anomeric hydroxyl group of protected hexoses in the synthesis of trehalosamine analogs⁴. To extend this utility, glycosylation of the anomeric hydroxyl group of 1,3,4,6-tetra-O-benzyl-D-fructofuranose⁵ (2) with 1 was attempted, as already communicated briefly⁶. Although, after Lemieux's first synthesis of sucrose⁷, many alternative syntheses⁸ have been carried out, and various aminodeoxysucroses⁹ have been synthesized by modifying sucrose itself, no report on the synthesis of an aminodeoxysucrose via glycosylation has yet appeared.

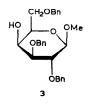

Various conditions for stereoselective α -glycosylation by using 1 have been reported^{2,3}. However, none were sufficiently effective for the glycosylation of the anomeric hydroxyl group of tetra-O-(p-chlorobenzyl)- α -D-hexopyranoses⁴. A survey of conditions showed that silver perchlorate and tribenzylamine in benzene gave the highest yield of the anomeric glycosides, together with an acceptable α -selectivity⁴. The procedure was then applied to the glyosylation of methyl 2,3,6-tri-O-benzyl- β -Dgalactopyranoside¹⁰ (3), which appears very unreactive¹¹, to afford the anomeric products **4a** and **4b** in good yields.

Subsequently, the procedure was extended to the glycosylation of the fructofuranose derivative 2. Chromatographic separation of the mixture furnished the major product (5a) in 29% yield, together with three minor ones (5b, 5c, and 5d). Sequential removal of the protecting groups from 5a gave the free base 6a. The ¹³C-n.m.r. spectrum of 6a was firmly assigned by correlating it with that of sucrose as assigned recently¹². The chemical shifts of the anomeric carbon atoms are very


^{*}Dedicated to Professor Sumio Umezawa on the occasion of his 73rd birthday and the 25th anniversary of the Microbial Chemistry Research Foundation.


[†]To whom correspondence should be addressed.





	w	×	Y	z
1	Br	н	Dnp	Ac
4 a	G 4	н	Dnp	Ac
4b	н	G4	Dnp	Ac
5a	βBF	н	Dnp	Ac
5ъ	αbf	н	Dnp	Ac
5c	н	αbf	Dnp	Ac
5đ	н	αBF	Dnp	Ac
6a	ßF	н	н	н
6ь	αF	н	н	н
6c	н	ß₣	н	н
6d	н	αF	н	н

Ac = acetyl Bn = benzyl Dnp = 2,4~dinitrophenyl Me = methyl

close to those of sucrose. This may indicate* that substitution of the 2-hydroxyl group by the amino group does not alter the orientation of the interglycosidic linkages of sucrose¹³.

Deprotection of **5b**, **5c**, and **5d** gave the free bases **6b**, **6c**, and **6d**, respectively. Their anomeric configurations were straightforwardly assigned from the chemical shifts of their anomeric carbon atoms¹⁴.

The combined yield (33%) of the β -fructofuranoside derivatives (**5a** and **5b**) compared with that (16%) of the α anomers (**5c** and **5d**) indicates that **2** is mainly the β anomer; the major signal at δ 102.5 in the ¹³C-n.m.r. spectrum of **2** may be assigned** to the β anomer¹⁴.

EXPERIMENTAL

General methods. — These are described in the foregoing paper⁴.

Methyl 2,3,6-tri-O-benzyl-4-O-[3,4,6-tri-O-acetyl-2-deoxy-2-(2,4-dinitroanilino)- α - and - β -D-glucopyranosyl]- β -D-galactopyranosides (4a and 4b). — An equimolar mixture of 1 (130.7 mg, 0.24 mmol), 3 (113.8 mg), tribenzylamine (70.3 mg), and silver perchlorate (50.8 mg) in benzene (1.3 mL) was vigorously stirred for 24 h at room temperature with exclusion of moisture and light. The mixture was filtered and the filtrate chromatographed on silica gel, with gradient elution by benzene-butanone, to give 4a (129.4 mg, 58%) and 4b (51.5 mg, 23%).

Compound 4a had $[\alpha]_{D}^{20} + 51^{\circ}$ (c 0.7, chloroform); δ_{H} (CDCl₃, Me₄Si): 1.77 (OAc), 2.00 (OAc), 2.05 (OAc), 3.57 (OMe), 8.21 (dd, 1 H, J 2 and 10 Hz, H-5 of DNP), 8.61 (1 H, J 9 Hz, NH), and 9.10 (d, 1 H, J 2, H-3 of DNP).

Compound **4b** had $[\alpha]_{D}^{20} - 25^{\circ}$ (c 0.5, chloroform); δ_{H} (CDCl₃, Me₄Si): 1.90 (OAc), 2.01 (6 H, OAc), 3.37 (OMe), 8.21 (dd, 1 H, J 2 and 10 Hz, H-5 of DNP), 8.57 (1 H, J 9 Hz, NH), and 8.97 (d, 1 H, J 2 Hz, H-3 of DNP).

Anal. Calc. for $C_{46}H_{51}N_3O_{17}$: C, 60.19; H, 5.60; N, 4.48. Found (**4a**): C, 60.07; H, 5.94; N, 4.31; (**4b**): C, 59.66; H, 5.66; N, 4.60.

3,4,6-Tri-O-acetyl-2-deoxy-2-(2,4-dinitroanilino)- α -D-glucopyranosyl 1,3,4,6-tetra-O-benzyl- β -D-fructofuranoside (5a) and isomers (5b, 5c, and 5d). — An equimolar mixture of 1 (1.01 g, 1.89 mmol), syrupy 2 (1.02 g), tribenzylamine (543 mg), and silver perchlorate (393 mg) in benzene (10 mL) was stirred in the aforementioned manner. The mixture was filtered and the filtrate chromatographed on silica gel (30 g) with gradient elution by benzene-butanone (100:1 \rightarrow 3:1, 10-mL fractions) to give five fractions: A (7-11), 365.7 mg (\sim 37%), R_F 0.75 (5:1 toluene-butanone), impure (2); B [12-18, 888.8 mg, 5a (R_F 0.67), 5b (R_F 0.63), and unidentified non-

^{*}The atoms in the 2-amino-2-deoxy-D-glucopyranosyl motety are numbered without primes, whereas those in the fructofuranosyl motety are primed. The interglycosidic oxygen atom is unnumbered. **The peak for the α anomer appears at $\delta = 105.3$ in CDCl₃ (Me₄Si). The ratio (2.1) is much smaller than the ratio (~5) of β anomer to the α anomer in the starting, syrupy 2, estimated approximately from the ¹³C-n.m.r. spectrum. This difference implies that anomerization of the β anomer of 2 occurs before formation of the interglycosidic linkage.

nitrogeneous compound(s)]; C [22-24, 158.1 mg (8.4%), 5c (R_F 0.60) and 5d (R_F 0.59)]; D [25-27, ~100 mg, unidentified nitrogenous compounds]; and E [28-30, 444.4 mg (~50%), impure 3,4,6-tri-O-acetyl-2-deoxy-2-(2,4-dinitroanilino)- α -D-glucopyranose].

Fraction B was repeatedly chromatographed to furnish pure 5a (540.3 mg, 28.7%) and 5b (232.0 mg, 12.1%).

Compound **5a** had $[\alpha]_D^{20} + 36^\circ$ (c 0.7, chloroform); δ_H (CDCl₃, Me₄Si): 1.77 (OAc), 1.97 (OAc), 2.07 (OAc), 5.92 (1 H, J 3.6 Hz, H-1), 6.59 (d, 1 H, J 10 Hz, H-6 of DNP), 8.01 (dd, 1 H, J 3 Hz, H-5 of DNP), 8.55 (d, 1 H, J 10 Hz, NH), and 9.01 (d, 1 H, H-3 of DNP); δ_c (CDCl₃, Me₄Si): 20.6 (2C, OAc), 20.8 (OAc), 55.1 (C-2), 61.2 (C-6), 67.8 (C-4), 67.9 (C-3), 68.7 (C-6), 72.0 (C-6'), 72.6 (C-1'), 72.8 (2C, Bn), 73.7 (2C, Bn), 79.0 (C-3'), 79.2 (C-4'), 83.9 (C-5'), 89.2 (C-1), 104.5 (C-2'), 114.1, 124.4, 129.5, 130.8, 136.2, 147.4 (DNP), and 169.5, 169.9, 170.4 (OAc).

Compound **5b** had $[\alpha]_D^{20} + 52^{\circ}$ (c 0.3, chloroform); δ_H (CDCl₃, Me₄Si): 1.87 (OAc), 2.03 (OAc), 2.05 (OAc), 5.65 (d, 1 H, J 3.5 Hz, H-1), 7.04 (d, 1 H, J 10 Hz, H-6 of DNP), 8.21 (dd, 1 H, J 2.7, H-5 of DNP), 8.45 (d, 1 H, J 9 Hz, NH), and 9.06 (d, 1 H, H-3 of DNP); δ_C (CDCl₃, Me₄Si): 56.1 (C-2), 61.7 (C-6), 82.6 (C-5'), 83.3 (C-3'), 86.8 (C-1), 89.7 (C-4'), and 109.8 (C-2').

Anal. Calc. for $C_{52}H_{55}N_3O_{17}$: C, 62.83; H, 5.58; N, 4.23. Found (5a): C, 63.21; H, 5.92; N, 3.93. (5b): C, 63.15; H, 5.75; N, 3.83.

Repeated chromatography of Fraction C with toluene-butanone gave 5c (85.0 mg, 4.5%) and 5d (72.2 mg, 3.8%).

Compound **5c** had $[\alpha]_D^{20}$ -7.5° (*c* 2.5, chloroform); δ_H (CDCl₃, Me₄Si): 1.87 (OAc), 2.05 (OAc), 2.07 (OAc), 5.04 (d, 1 H, J 8 Hz, H-1), 7.64 (dd, 1 H, J 3 and 10 Hz, H-5 of DNP), 8.31 (d, 1 H, J 8 Hz, NH), and 8.85 (d, 1 H, J 3 Hz, H-3 of DNP); δ_C (CDCl₃, Me₄Si): 58.0 (C-2), 62.3 (C-6), 79.8 (C-3'), 81.3 (C-5'), 83.5 (C-4'), 94.4 (C-1), and 105.0 (C-2').

Compound **5d** had $[\alpha]_{D}^{20}$ +1.4° (*c* 2, chloroform); δ_{H} (CDCl₃, Me₄Si): 1.87 (OAc), 1.98 (OAc), 2.03 (OAc), 5.03 (d, 1 H, J 8 Hz, H-1), 8.01 (dd, 1 H, J 3 and 10 Hz, H-5 of DNP), 8.51 (d, 1 H, J 9 Hz, NH), and 8.74 (d, 1 H, J 3 Hz, H-3 of DNP); δ_{C} (CDCl₃, Me₄Si): 57.6 (C-2), 62.3 (C-6), 82.3 (C-3'), 83.5 (C-5'), 88.2 (C-4'), 96.1 (C-1), and 109.6 (C-2').

Anal. Calc. for $C_{52}H_{55}N_3O_{17}$: C, 62.83; H, 5.58; N, 4.23. Found (5c): C, 62.46; H, 5.80; N, 4.00. (5d): C, 62.24; H, 5.70; N, 4.27.

2-Amino-2-deoxy- α -D-glucopyranosyl β -D-fructofuranoside (6a) and its derivatives. — Compound 5a (499.0 mg, 0.50 mmol) was treated overnight with dilute sodium methoxide in methanol (0.1%, 40 mL). The solution was made neutral with acetic acid, and evaporated. Chromatography on silica gel with benzene-butanone gave the yellow deacetylated product (423.4 mg, 98%). This compound (383.4 mg, 0.44 mmol) was treated with Dowex 1-X2 (100 mesh, OH, 5 mL) in moist acetone (12 mL) overnight. Filtration, evaporation of the filtrate, and chromatography on silica gel with benzene-ethanol, afforded a colorless mass (169.5 mg, 54% from 5a), which was hydrogenated twice over palladium (140 mg) in a mixture of methanol (3 mL), acetic acid (1 mL), and water (3 mL). After removal of the catalyst, the solution was evaporated and passed through a column of Dowex 1–X2 irrigated with water to give the free base (66.9 mg, 43 $^{\circ}_{0}$ from **5a**); $[\alpha]_{D}^{20}$ +72° (*c* 0.3, water); δ_{H} [D₂O, Me₄Si (ext.)]: 3.20 (dd, 1 H, *J* 3.5 and 9.5 Hz, H-2), and 5.84 (d, 1 H, *J* 3.5 Hz, H-1); δ_{C} [D₂O, Me₄Si (ext.)]: 56.1 (C-2), 61.4 (C-6), 63.0 (C-1'), 63.2 (C-6'), 70.7 (C-4), 73.9 (C-5), 74.6 (C-3'), 75.0 (C-3), 77.8 (C-4'), 82.3 (C-5'), 94.0 (C-1), and 104.7 (C-2').

Anal. Calc. for $C_{12}H_{23}NO_{10} \cdot 0.75 H_2O$: C, 40.62; H, 6.95; N, 3.95. Found: C, 40.70; H, 7.17; N, 3.87.

Treatment of **6a** with acetic anhydride in pyridine gave the peracetate; m.p. 58–60°: $[\alpha]_D^{20}$ + 53° (*c* 1, chloroform); δ_H (CDCl₃, Me₄Si): 1.96 (NAc), 2.02 (6 H, OAc), 2.07 (OAc), 2.10 (9 H, OAc), 2.20 (OAc), 5.58 (d, 1 H, J 3.7 Hz, H-1), and 6.01 (d, 1 H, J 9 Hz).

Anal. Calc. for C₂₈H₃₉NO₁₈: C, 49.63; H, 5.80; N, 2.07. Found: C, 50.41; H, 6.09; N, 2.08.

Treatment of **6a** with acetic anhydride in methanol gave the *N*-acetyl derivative; m.p. 178–180°, $[\alpha]_D^{20} + 71°$ (c 0.5, water); δ_H [D₂O, Me₄Si (ext.)]: 2.53 (NAc) and 5.89 (d, 1 H, J 3.3 Hz, H-1).

Anal. Calc. for C₁₄H₂₅NO₁₁: C, 42.05; H, 6.79; N, 3.77. Found: C, 41.43; H, 6.93; N, 3.82.

2-Amino-2-deoxy- α -D-glucopyranosyl α -D-fructofuranoside (**6b**), 2-amino-2deoxy- β -D-glucopyranosyl β -D-fructofuranoside (**6c**), and 2-amino-2-deoxy- β -D-glucopyranosyl α -D-fructofuranoside (**6d**). — The aforementioned processes for deprotection were applied to the isomeric conjugates **5b**, **5c**, and **5d** to afford the corresponding free bases, **6b**, **6c**, and **6d**.

Compound **6b** had $[\alpha]_{D}^{20}$ +167° (*c* 2, water); δ_{H} [D₂O, Me₄Si (ext.)]: 3.26 (dd, 1 H, *J* 3.7 and 9.3 Hz, H-1) and 5.81 (d, 1 H, *J* 3.7 Hz, H-1); δ_{C} [D₂O, Me₄Si (ext.)]: 56.1 (C-2), 61.8 (2C, C-6 and C-1'), 62.5 (C-6'), 71.0 (C-4), 74.0 (C-5), 74.7 (C-3), 78.3 (C-3'), 82.4 (C-4'), 85.2 (C-5'), 92.9 (C-1), and 110.1 (C-2').

Anal. Calc. for $C_{12}H_{23}NO_{10} \cdot 0.75 H_2O$: 40.62; H, 6.95; N, 3.95. Found: C, 40.39; H, 7.14; N, 3.74.

Compound **6c** had $[\alpha]_D^{20} - 34^\circ$ (c 0.1, water); $\delta_c [D_2O, Me_4Si \text{ (ext.)}]$: 57.5 (C-2), 61.7 (C-6), 62.2 (C-1'), 62.8 (C-6'), 70.6 (C-4), 74.4 (C-3'), 77.0 (2C, C-3, and C-5), 77.4 (C-4'), 82.4 (C-5'), 96.2 (C-1), and 105.4 (C-2').

Anal. Calc. for $C_{12}H_{23}NO_{10} \cdot 0.5 H_2O$: C, 41.14; H, 6.91; N, 4.00. Found: C, 41.27; H, 6.83; N, 3.90.

Compound **6d** had $[\alpha]_D^{20} + 4.7^{\circ}$ (c 0.5, water); δ_C [D₂O, Me₄Si (ext.)]: 57.6 (C-2), 61.7 (2C, C-6 and C-1'), 62.3 (C-6'), 70.6 (C-4), 77.0 (2C, C-3 and C-5), 77.4 (C-3'), 81.9 (C-4'), 84.3 (C-5'), 97.0 (C-1), and 109.8 (C-2').

Anal. Calc. for $C_{12}H_{23}NO_{10} \cdot 0.75 H_2O$: C, 40.62; H, 6.95; N, 3.95. Found: C, 40.24; H, 6.97; N, 4.12.

REFERENCES

- 1 P. F. LLOYD AND M. STACEY, Tetrahedron, 9 (1960) 116-124.
- 2 S. UMEZAWA AND S. KOTO, Bull. Chem. Soc. Jpn., 39 (1966) 2014-2017.
- 3 K. HEYNS, K. PROPP, R. HARRISON, AND H. PAULSEN, Chem. Ber., 100 (1967) 2655–2663; W. MEYER ZU RECKENDORF AND N. WASSILIADOW-MICHELI, *ibid.*, 103 (1970) 1792–1796; A. HASEGAWA, D. NISHIMURA, T. KUROKAWA, AND M. NAKAJIMA, Agric. Biol. Chem., 36 (1972) 1773–1776; S. OGAWA, Y. FUNAKI, K. IWATA, AND T. SUAMI, Bull. Chem. Soc. Jpn., 49 (1976) 1975–1979.
- 4 S. KOTO, S. INADA, AND S. ZEN, Bull. Chem. Soc. Jpn., 54 (1981) 2728-2734.
- 5 R. K. NESS, H. W. DIEHL, AND H. G. FLETCHER, JR., Carbohydr. Res., 13 (1970) 23-32.
- 6 S. KOTO, S. INADA, AND S. ZEN, Chem. Lett., (1980) 183-184.
- 7 R. U. LEMIEUX AND G. HUBER, J. Am. Chem. Soc., 78 (1956) 4117-4119.
- 8 H. TSUCHIDA AND M. KOMOTO, Agric. Biol. Chem., 29 (1965) 239-242; A. KLEMER AND B. DIETZEL, Tetrahedron Lett., (1970) 275-278; R. K. NESS AND H. G. FLETCHER, JR., Carbohydr. Res., 17 (1971) 465-470; D. E. ILEY AND B. FRASER-REID, J. Am. Chem. Soc., 97 (1975) 2563-2565.
- 9 S. UMEZAWA, T. TSUCHIYA, S. NAKADA, AND K. TATSUTA, Bull. Chem. Soc. Jpn., 40 (1967) 395-401; I. JEŽO, Chem. Zvesti, 25 (1971) 364-368; R. KHAN, K. S. MUFTI, AND M. R. JENNER, Carbohydr. Res., 30 (1973) 183-186; T. SUAMI, T. IKEDA, S. NISHIYAMA, AND R. ADACHI, Bull. Chem. Soc. Jpn., 48 (1975) 1953-1954; N. K. SHARMA, J. L. NORULA, AND S. K. MATTEY, J. Indian Chem. Soc., 58 (1981) 795-798.
- 10 H. B. BORÉN, P. J. GAREGG, L. KENNE, Å. PILOTTI, S. SIGFRID, AND C.-G. SWAHN, Acta Chem. Scand., 27 (1973) 2740–2748; H. M. FLOWERS, Carbohydr. Res., 39 (1975) 245–251.
- 11 M. DEJTER-JUSZYNSKI AND H. M. FLOWERS, Carbohydr. Res., 41 (1975) 308-312; P. A. GENT, R. GIGG, AND A. A. E. PENGLIS, J. Chem. Soc. Perkin Trans. 1, (1976) 1395-1404.
- 12 A. J. JONES, P. HANISCH, AND A. K. MCPHAIL, Aust. J. Chem., 32 (1979) 2763-2766.
- 13 G. M. BROWN AND H. A. LEVY, Acta Crystallogr. Sect. B, 29 (1973) 790-797.
- 14 A. S. PERLIN, N. CYR, H. J. KOCH, AND B. KORSCH, Ann. N. Y. Acad. Sci., 222 (1973) 935-942.