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Abstract-The reaction of an equimolar mixture of (q5-CSH5)(I)2(CO)W&NEt2 (1) and 
t-C,H,NC in THF at 5O”C, results in the replacement of the CO ligand by isocyanide and 
formation of (qS-CSHS)(I)2(t-C4H9NC)W=CNEtZ (2). Complex 2 reacts further with 
t-C,H,NC in refluxing THF with displacement of the iodide ligand from the coordination 
sphere to give the cationic carbyne complex [(~5-CsH5)(I)(t-CqH9NC)2W&NEtz]+I- (3). 
A new route to 2 in three steps has also been developed. The starting material, mer-I(t- 
CqH9NC)3W=CNEt2 (4), is transformed with KCSHS in refluxing THF to (q5-C,H,)(t- 
C,H9NC)(CO)W=CNEt2 (5). Complex 5 is then oxidized with elemental iodine in CHzClz 
to give [($-C,H,)(I)(t-C,H,NC)(CO)W=CNEtJ+I- (6), the first cationic, carbonyl-con- 
taining carbyne complex of tungsten in a higher oxidation state. Finally, 6 is decarbonylated 
thermally in boiling THF to 2. The composition and structure of the new complexes 2, 3, 5 
and 6 have been determined by total elemental analyses and IR, ‘H NMR, 13C NMR 
spectroscopies, as well as by mass spectrometry. The non-ionic nature of 2 and ionic nature 
of 6 in solution, have been confirmed by conductivity measurements. 

Complexes containing a metalxarbon triple bond 
are divided into two classes. Class (a) includes com- 
pounds of low valent metals, which are known as 
Fischer type carbyne complexes. In these complexes, 
the electron-rich metal is stabilized by good Z- 
acceptor ligands such as CO, e.g. trans- 
X(C0)4M=LR (X = halogen ; M = Cr, MO, W ; 
R = aryl or alkyl group).’ Class (b) contains com- 
plexes of high valent metals, i.e. Schrock type 
alkylidyne complexes. In these complexes, the 
electron-deficient metal is stabilized by good n- 
donor ligands, such as halogen or alkoxy ligands, 
e.g. X3(dme)W&CMe3 (X = halogen ; dme = 1,2- 
dimethoxyethane). * 

Striking differences in the reactivity exist between 
class (a) and (b) compounds. This is most im- 
pressively demonstrated by their reactions with 
alkynes. Fischer type carbyne complexes catalyse 
alkyne polymerization, while Schrock type alkyl- 
idyne complexes function as alkyne metathesis 
catalysts. 3*4 

In our development of the chemistry of sub- 
stituted tungsten carbyne complexes with the gen- 
eral formula I(C0)2L,W=CNEt2 (L = C5H5N, 

PMe,, t-C,H,NC, LZ = 2,2’-bipy, o-phen), we have 
demonstrated that their oxidative decarbonylation 
with iodine gives (I)3(CO)L2W=CNEt2 in high 
yield. 5-8 

These complexes are unique, because they com- 
bine features of both Fischer type carbyne 
complexes, such as z-acceptor CO ligands, and 
Schrock type alkylidyne complexes, i.e. a high 
valent metal centre. Therefore, new, interesting 
reactivity patterns are expected. We first studied 
their reactions with nucleophiles and found 
two reaction pathways to be predominant: 
(a) Substitution of the labile CO ligand and 
one iodide ligand by the nucleophile to form 
cationic carbyne complexes, e.g. the reaction of 
(I)3(CO)L2W=CNEt2 with t-C,H,NC to give 
[(I)2(t-C4H9NC)2L2W=CNEtZlfI- (L2 = 2,2’- 
bipy, o-phen; L = t-C4H9NC)7’8 and (b) reductive 
elimination of iodine to give low valent, neutral 
or cationic carbyne complexes, e.g. the reaction of 
(I)3(CO)(PMe3)2W=CNEt2 or (I),(CO)L,W= 
CNEtz (L2 = 2,2’-bipy, o-phen) with PMe, to give 
mer-I(PMe3),(CO)W=CNEt2 or [(PMe,),(CO) 
L,W=CNEt,]+I- (L2 = 2,2’-bipy, o-phen).5*6 To 
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extend our studies on cyclopentadienyl (cp) sub- 
stituted carbyne complexes, we have first devel- 
oped a high yield route to (n5-CsRJ(CO),W 
z=CNEt* (R = H, Me) and subsequently 
decarbonylated these complexes to give ($-C5R5) 
(X),(CO)W=CNEt, (R = H, Me; X = Br, I).99’o 
We have found differences in the reactivity of 
($-C5H,)(I),(CO)W=CNEt2 compared to the 
corresponding (I)3(CO)L2W=CNEt, complexes 
(Lz = 2,2’-bipy, o-phen; L = PMe,, t-C,H,NC). 
Thus a reaction with PMe, occurs only at elevated 
temperatures ; it leads to the displacement of 
the Cp ligand and reductive elimination of 
iodine to form low valent trimethylphosphine- 
substituted carbyne complexes. The expected pro- 
duct, (n5-C5HS)(PMe3)(CO)W=CNEt2, was not 
observed. ’ ’ This result has prompted us to investi- 
gate the reaction of (a’-C5H,)(I),(CO)W=CNEt2 
with t-C,H,NC. 

RESULTS AND DISCUSSION 

The reaction of 1 with t-C,H,NC (molar ratio 
1 : 1.2) in THF at 50°C yields quantitatively the 
substitution product 2 [eq. (l)]. 

This product is isolated as a purple, microcrystalline 
solid, which is only slightly sensitive to air and 
moisture, soluble in CH#Zl,, THF and toluene, but 
insoluble in Et*0 and n-pentane (m.p. 110°C). 

Complex 2 reacts with t-C,H,NC in boiling THF 
with the elimination of one iodide ligand from the 
coordination sphere and formation of the yellow, 
cationic carbyne complex 3 [eq. (2)]. This product 
is soluble in CH2C12, sparingly soluble in cold THF 
and toluene, but insoluble in Et20 and n-pentane. 
Complex 3 undergoes decomposition in a sealed 
capillary at 135°C. A slow halogen exchange (iodide 
for chloride) occurred in a solution of 3 in CH2C12 
at room temperature. This reaction is accelerated 
in boiling CH2C12 and leads to mixed halogen sub- 
stitution products. I1 

A different route to 2 has been developed requir- 
ing three steps. The first step involves the reaction 
of the easily available mer-I(t-CqH9NC)J(CO)W= 
CNEt2 (4)” with KCSHs in refluxing THF to give 
5 [eq. (3)]. Complex 5 is an extremely air-sensitive, 
yellow oil, which is very soluble in CH2C12, THF, 
Et,0 and n-pentane. Complex 5 is then quanti- 
tatively transformed with elemental iodine to 6, the 

THF.500C y 
+ +NC P f 

Et 
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T H F. 67% 

w 
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first carbonyl containing, cationic carbyne complex the coordinated isonitrile and carbonyl ligands 
of tungsten in a higher oxidation state [eq. (411: (Table 1). 

CHPCIP 

-30°C-r.t. 
(4) 

Et 

5 6 

This product is obtained as an orange, micro- 
crystalline powder, which is very soluble in 

A shift of the v(C=N+) absorptions to higher 

CH2ClZ, sparingly soluble in cold THF and toluene, 
frequency is observed when the IR data of 2,3 and 

but insoluble in Et,0 and n-pentane. Decompo- 
6 are compared. This shift can be attributed to a 

sition of 6 is observed in a sealed capillary at 108°C. 
reduction of the electron density at the metal, and 

In the last step, 6 is thermally decarbonylated to 
the simultaneous weakening of the metal isonitrile 
back-bonding. The same trend is observed for the 

quantitatively give 2 [eq. (5)] : 

I- 

THF. 67OC t 
I- c ;y.qN+ + co 

\ 

L 

6 

We assume a piano-stool geometry for complexes 
2, 3 and 6, in agreement with MO-calculations on 
CpMLQ complexes, which favour energetically this 
structure over an alternative C gH ,-capped trigonal 
bipyramidal structure. ’ 3 The solution IR spectra of 
the new compounds, 2, 3, 5 and 6, show charac- 
teristic absorptions for the stretching vibrations of 

\_ 
N’Et 

Et’ 

2 

(5) 

v(C=O) band of compound 1 (v(W) in CH2C12, 
2008 cm-‘)’ and 6 (v(C=O) in CHzC12, 2053 
cm-‘), due to the weaker metal carbonyl back- 
bonding in 6 compared with 2. In KBr, the com- 
plexes exhibit a strong band around 1600 cm- ‘, 
which may be assigned to a v(C=N) vibration. This 

Table 1. v(CkN+), v(C=O) and v(C=N) stretching vibrations of 2, 
3,5and6incm-’ 

Complex Solvent v(C=N+) v(C=o) v(C==N) 

CH,Cl, 2145 s - 1604 
THF 2141 s - 
Toluene 2131 s - 

CH,Cl, 2172 s - 1615 
THF 2192 sh, 2170 s - 
Toluene 2192 sh, 2171 s - 

CH,Cl, 1925 w 1829 s - 
THF 1929 w 1845 s 
n-Pentane 1933 m 1860 s 

CHzClz 2199 m 2053 s 1639 
THF 2210 m 2041 s 
Toluene 2206 m 2041 s 

0 v(C=N) in KBr solvent. 
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Fig. 1. Resonance forms for the bonding in the carbyne 
ligand. 

band displays the strong interaction of the metal- 
carbon triple bond with the lone pair of nitrogen 
(Fig. 1, resonance form B). 

The contribution of resonance form B to the 
bonding description of the carbyne ligand is dimin- 
ished in 2 compared with 3 and 6, due to an 
enhancement of the electron density at the metal 
centre. Therefore, a shift of the v(C=N) vibration 
to lower frequency is observed. A similar trend 
has already been reported for other diethylamino- 
carbyne complexes of tungsten in both lower and 
higher oxidation states.5*6*8”4 

The triplets for the methyl protons of the di- 
ethylamino group observed in the ‘H NMR 
spectra of 2, 3, 5 and 6, confirm the free rotation 
of the ethyl groups around the carbyne-carbon- 
nitrogen bond (Table 2). A singlet is obtained for 
the t-butyl groups of the isonitrile ligands in 

3, showing their trans-orientation. Complexes 5 
and 6 are chiral, therefore, the protons of the 
methylene groups in the carbyne ligand are dia- 
stereotopic and give a signal of four overlapping 
quartets, which may be assigned in an ABX3 spin 
system : 

yL4 ‘i’x 

C-C-Hx 

/ 
A A B x 

WEC-_N 

\ VT 
C-C-Hx 

A A B x 

The same splitting is observed for the signals of the 
methylene protons in 2, which must, therefore, also 
be diastereotopic. These facts suggest a structure of 
low symmetry with a &-orientation of the iodide 
ligands. In contrast, the t-C,H,NC ligands in 3 are 
trans-oriented and the molecule contains a plane 
of symmetry ; the methylene protons are therefore 
homotopic and give rise to a quartet. 

Resonances, expected for the carbyne carbons in 
cyclopentadienyl-substituted diethylaminocarbyne 

Table 2. ‘H NMR spectroscopic data of 2,3 and 6 in CD,Cl, and 5 in CsD,; 
chemical shifts in 6, relative to the solvent (CDHCI,, 6 = 5.32 ppm; CsDsr 
6 = 7.15 ppm) ; relative intensities and multiplicities in parentheses, coupling 

constants in Hz 

Complex NCH,CH, t-C,H,NC NCH,CH 3 W-f, T (“Cl 

2 1.33 (6, t) 
3JHH = 7.3 

3 1.29 (6, t) 
3JHH = 7.3 

5 1.09 (6, t) 
3JHH = 7.3 

6 1.32 (6, t) 
3JHH = 7.3 

1.53 (9, s) 3.45 (2, dq) 5.43 (5, s) 
‘J”,,,, = 13.1 
3JH,H, = 7.3 ; 
3.52 (2, dq) 
‘JHAH, = 13.1 
3JH,H, = 7.3 

1.55 (18, s) 3.48 (4, q) 5.63 (5, s) 
3JHH = 7.3 

1.24 (9, s) 2.83 (2, dq) 5.32 (5, s) 
‘J”,,,, = 13.2 
3JH,H, = 7.3 ; 
2.91 (2, dq) 
*JHAH, = 13.2 
3JH,H, = 7.3 

1.60 (9, s) 3.59 (2, dq) 6.02 (5, s) 
‘J,,,“, = 13.2 
‘JHAH, = 7.3 ; 
3.63 (2, dq) 
‘JHAH, = 13.2 
‘JHBH, = 7.3 

20 

0 

20 

20 
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Table 3. “C NMR spectroscopic data of 2, 3 and 6 in CD&I, and 5 in C,D,; chemical shifts in 6, relative to the 
solvent (CD$&, S = 53.8 ppm; C6Ds, 6 = 128.0 ppm) 

Complex NCH&‘H3 Me&NC NCH&H:, Me&NC CSH, Me&NC W-CO W=C! T (“C) 

2 14.7 30.9 48.9 59.3 94.7 150.3 - 305.5 20 
3 14.5 30.1 49.1 59.9 93.3 136.2 - 302.3 0 
5 14.4 31.6 45.6 58.7 89.7 202.8 226.7 259.9 20 
6 14.3 30.1 SO.1 61.0 94.9 127.8 201.5 302.3 20 

complexes of tungsten, are observed in the ’ 3C- 
(‘H) NMR spectra of 2,3,5 and 6 (Table 3).9*‘o 

The isonitrile carbons appear as broad singlets, 
because of the quadrupol relaxation of nitrogen. 
Therefore any 13C-14N coupling cannot be 
resolved. Comparing the data of 2, 3 and 6, an 
upfield shift of the isonitrile carbon resonance is 
observed, This can be explained by the weaker 
metal-isonitrile back-bonding (6 < 3 < 2) and is 
in agreement with results obtained earlier for other 
tungsten isonitrile complexes. *, ’ 2* ’ 4* ’ 5 For the same 
reason, the strong metal-isonit~le back-ending in 
5 causes an extremely large downfield shift of the 
isonitrile carbon signal. This is independently dem- 
onstrated by the shift of the v(GN+) vibration 
in the IR spectrum of 5 to a considerably lower 
frequency (v(C%N-# in CH2C12, 1925 cm-‘> com- 
pared with that of the free ligand (v(CzzN-/-) in 
CH&l,, 2140 cm-‘). 

The conductance of 6 in 1,2-dichloroethane is 
of the same magnitude (c = 4.6 x 10e4 mol dmw3, 
t = 19.8”C, A = 31 Q2-’ cm2 mol- ‘) as that of 
NRZX- (R = “bu, “pr ; X = Br, I, PF6) and other 
ionic diethylaminocarbyne complexes of tungsten 
in low and high oxidation states.“8*‘6 The con- 
ductivity increases with decreasing con~ntration of 
the complex, and proves inde~ndently the ionic 
nature of 6 in solution. In contrast, 1,2-dichloro- 
ethane solutions of 1 and 2 are not conducting. 

The mass spectral data of 2, 3, 5 and 6 (Table 
4) reveal characteristic fm~en~tion patterns of 
isonit~le-substituted diethylaminocarbyne com- 
plexes. Loss of 1 or t-C,H,NC, elimination of iso- 
butylene (Me,C===CH,) from the t-C,H,NC ligand 
or C2H5 from the carbyne ligand are observed, 
Using the SIMS method for complex 3, the parent 
cation [(~5-C~H~)(I)(~-C~H~NC)~W~NEt2]+ 
(K+ : m/z = 626) is observed. Complex 6 decom- 

Table 4. Mass spectral data of 2,3,5 and 6 

m/z 
(relative ’ 84W 

Complex isotope) Tentative assignment 

543 
487 

626 543 
487 
458 

444 388 
360 
331 

670 
587 
460 
543 
487 
460 
431 
376 

[M-I]+ 
[M-I-Me,C=CH,]+ 

F-t-cpVNC]+ 
p--&C,H,NC-Me&kCHJ+ 
[K-t-C4H9NC-Me&k=CH2--CZHs]+ 

E-Me,CkCHJ’ 
[M-Me,CkCH,--COfi 
[M-Me,C=CH2--CO--C2H5]C 

[M-CO]+ 
[M-CO--t-C,H ,NC] + 
[M-CO--t-C,H,NC-I]C 
[M--CO-I]+ 
[M--C&I-Me&k=CH$” 
[M-CO-I-MeQ=CH,--HNC]+ 
[M-CO-I-r-C,H,NC--C,H,]+ 
[M-CO-I--t-C,H,NC---C,H~,H,N~+ 
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poses under EI conditions with elimination of CO NMR spectra with a Jeol GX 270 FT instrument 
and formation of [(v5-C5H5)(I)z(t-C4H9NC)W= and mass spectra with a Varian MAT CH7 spec- 
CNEtz]+ (m/z = 670), the molecular ion of 2. This trometer using EI conditions for 2,5 and 6 and the 
ion could not be detected in the mass spectrum of SIMS method for 3. Conductance measurements 
2 under EI conditions. were carried out as described previously.“8*‘6 

CONCLUSION (~5-CSH5)(I)&-C4HgNC)W=CNEtZ (2) 

Starting from (q*-C5H5)(C0)zW=CNEtz, the 
precursor of (~5-C5HS)(I)2(CO)W=CNEtz, and 
(~5-C5H5)(t-C.,HgNC)(CO)W=CNEtz, we were 
able to isolate by high yield methods, neutral and 
cationic cyclopentadienyl-substituted tungsten car- 
byne complexes containing isocyanide ligands. The 
oxidative decarbonylation of the electron-rich 
complex (q5-CSH5)(t-C4H,NC)(CO)W=CNEtZ, 
enabled us to synthesize [(q5-C5H5)(I)(f-C4HsNC) 
(CO)W=CNEtz]+I-, the first cationic diethyl- 
aminocarbyne complex of high-valent tungsten 
containing a carbonyl ligand. Its decarbonyl- 
ation leads to the first neutral, carbonyl-free di- 
ethylaminocarbyne complex of high-valent tung- 
sten. Based upon the spectroscopic data, the mass 
spectral data and the conductivity measurements, 
we suggest a neutral structure with a c&orientation 
of the two iodide ligands for 2 and an ionic structure 
with a trans-orientation of the two isonitrile ligands 
for 3. In both molecules an iodide ligand, acting as 
a n-donor, is located in the truns-position relative 
to the carbyne ligand. Therefore, we assume that 
the same orientation is retained in the ionic com- 
pound 6, although we cannot exclude stereoisomers 
with a different orientation. 

A purple solution of 1 (180 mg, 0.29 mmol) and 
t-C,H,NC (0.04 cm3, 0.35 mmol) in THF (60 cm3) 
was heated for 1 h at 50°C until the v(O) band 
in the IR spectrum of 1 at 2000 cm- ’ disappeared. 
The red-purple solution was reduced in volume 
and an Et@-pentane mixture (1: 2) was added. 
The supernatant, almost colourless solution was 
removed and the purple, microcrystalline solid 
dried in vacua (190 mg, 97% relative to 1). (Found : 
C, 27.0; H, 3.5; I, 38.1; N, 4.2; W, 28.2. 
C,5H2412NZW (670.03) requires: C, 26.9; H, 3.6; 
I, 37.9; N, 4.2; W, 27.4%.) 

[(~5-C5H5)(I)(t-C4HgNC)zW=CNEt2]+I- (3) 

A red-purple solution of 2 (140 mg, 0.21 mmol) 
and t-C,H,NC (0.032 cm3, 0.28 mmol) in THF (50 
cm’) was refluxed for 5 h. The colour of the solution 
turned brown-yellow. The solvent was reduced in 
volume and n-pentane was added. The supernatant 
light brown solution was decanted and the yellow, 
microcrystalline solid dried in vacua (140 mg, 89% 
relative to 2). (Found : C, 3 1.9 ; H, 4.5 ; I, 32.6 ; N, 
5.5; W, 24.6. C20H3312N3W (753.16) requires: C, 
31.9; H, 4.4; I, 33.7; N, 5.6; W, 24.4%.) 

The new complexes are useful starting materials 
for the investigation of isonitrile carbyne coupling 
reactions induced by electrophiles or reducing 
agents. I7 

(~5-C5H5)(t-C4HgNC)(CO)W=CNEtz (5) 

EXPERIMENTAL 

KC5H5 was prepared from KH and C5H6 in 
THF. (~5-CSH5)(I)z(CO)W=CNEtz and mer-I(t- 
CqHsNC)3(CO)W=CNEtz were synthesized as de- 
scribed previously.‘*” t-C,H,NC was distilled and 
stored under nitrogen. All operations were carried 
out under nitrogen or argon atmospheres using 
Schlenk tube techniques. The solvents were dried 
by standard methods (n-pentane, toluene, Et,0 
and THF over Na ; CHzClz over P4010 and 
Na/Pb alloy). The Al2O3 used for filtration (Merck 
Darmstadt, neutral, activity 1, 0.063-0.2 mm) was 
degassed and dried at room temperature in vacua, 
and then saturated with nitrogen. Elemental analy- 
ses were determined by the Microanalytical Lab- 
oratory of this department. IR spectra were mea- 
sured with a Nicolet DXS FT spectrophotometer, 

A mixture of 4 (280 mg, 0.42 mmol) and KC5H5 
(0.70 mmol) was refluxed in THF (60 cm’) for 6 h. 
The solvent was then evaporated in vacua and the 
residue extracted with Et20 (3 x 30 cm’). The 
extracts were filtered through A1,03 (2 x 3 cm) and 
the solvent removed in vacua to give a yellow oil. 
Upon cooling a saturated solution of the yellow oil 
in n-pentane to -78”C, yellow crystals of 5 were 
obtained, which melt below room temperature (150 
mg, 81% relative to 4). (Found: C, 43.0; H, 5.4; 
N, 6.2. C,,H,,N,OW (444.23) requires: C, 43.3; 
H, 5.4; N, 6.3%.) 

[(q’-C,H,)(I)(t-C,HgNC)(CO)W=CNEtz]+I- (6) 

To a yellow solution of 5 (110 mg, 0.25 mmol) 
in CH2C12 (30 cm3) was added at - 30°C a purple 
solution of Iz (62 mg, 0.24 mmol) in CH,C12 (20 
cm’). The colour of the iodine solution disappeared 
immediately and the reaction solution turned first 
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to red and then, upon warming up to room tem- 
perature, to orange. The solvent was reduced in 
volume in uucuo and an Et@pentane mixture 
(1: 2) was added. The supematant, almost colour- 
less liquid was decanted, and the microcrystalline, 
orange residue dried in vucuo (165 mg, 95% relative 
to 5). (Found: C, 27.6; H, 3.5; I, 36.1; N, 4.0; 0, 
2.3 ; W, 26.5. CIgHJ2N20W (698.04) requires : C, 
27.5; H, 3.5; I, 36.4; N, 4.0; 0, 2.3; W, 26.3%.) 

(r/5-CsHs)(I)2(f-C4H9NC)W=CNEtz (2)from 6 

An orange suspension of 6 (140 mg, 0.20 mmol) 
in THF (50 cm3) was refluxed for 1.5 h. Upon 
warming, 6 dissolved in THF to give first an orange 
solution, which then changed colour through red 
to red-purple. When all of 6 had been consumed 
(monitoring by IR) the solution was concentrated 
in uacuo and an Et@--pentane mixture (1: 2) was 
added. The supematant liquid was decanted and 
the microcrystalline, purple precipitate dried in 

wcuo (130 mg, 97% relative to 6). 
2 was characterized by the ‘H NMR and IR 

spectra. 
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