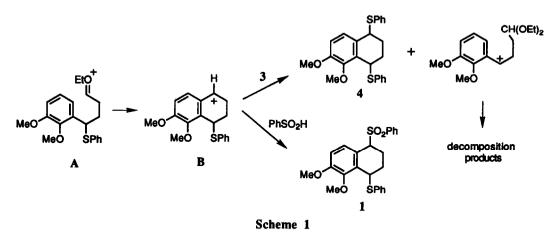

A CYCLIZATION-TRAPPING ROUTE TO CARBOCYCLIC AND HETEROCYCLIC BENZYLIC SULFONES

S. W. McCombie*, C. Ortiz¹ and A. K. Ganguly

Chemical Research, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey NJ 07033-0539, U.S.A.


Abstract: Acetals of 4-arylbutyraldehydes and 3-aryloxy-, 3-arylamino- and 3-arylthiopropionaldehydes react with Na-sulfinates in formic or trifluoroacetic acid to give good yields of the corresponding 4-(sulfonyl) substituted tetralins, tetrahydroquinolines, chromans and thiochromans.

During the course of synthetic studies² on the pseudopterosin family of diterpenes, we required tetralin derivatives such as 1, bearing oxidatively differentiated sulfur moeities at C-1 and C-4. Our initial route^{2a} required six steps and used a standard intramolecular Friedel-Crafts reaction to prepare the tetralone 2, the final step being the reaction of the corresponding tetralol with PhSO₂Na in HCO₂H. This route to benzylic sulfones was originally employed as a mechanistic test for the intermediacy of carbonium ions³ and has also found preparative use.⁴ Related reactions with thiols have been utilised for the degradation and structure elucidation of complex lignans⁵ and constitute a useful route to benzylic sulfides.⁶ We have now devised a novel, shorter route to 1 and we have extended this chemistry to heterocyclic systems: we report our preliminary results in this paper.

Anticipating that the acid-catalysed reaction between a sulfinic acid and an appropriately substituted 4-phenylbutyraldehyde acetal might be either reversible or slow under conditions where a benzylic carbonium ion, derived via cyclisation of the acetal, could be trapped to give the corresponding sulfone, we prepared the acetal 3 (2,3-(MeO)₂C₆H₃CH₂Cl + PhSNa, then BuLi; ICH₂CH₂CH(OEt)₂, -70° to RT).⁷ Gratifyingly, 3 reacted with 2 eq. of PhSO₂Na in HCO₂H (RT, 6 h) to give 1 in 84% isolated yield. When the sulfinate salt was omitted, a modest yield of the bis-(phenylthio) compound 4 separated, leaving a complex mixture in the liquors. These results are consistent with the processes shown in Scheme 1. The initially formed, acyclic oxocarbonium ion A cyclises efficiently, and the product then affords the tetralin-1 cation **B**, for which various reaction pathways are available. In the absence of any traps (e.g. in the reaction of 6-methoxy-1-tetralol with acid), dimer formation is observed⁸ by virtue of reaction between the

carbonium ion and the electron-rich styrene derivative formed by proton loss. In the case of 3 the phenylthio group is transferred, resulting in the stable thioether 4 plus mixtures presumably derived from the educt carbonium ion. With sulfinate present, the ion B is cleanly trapped to produce the benzylic sulfone. Compounds 1 and 4 were predominantly the trans isomers, and gave identical disulfone samples upon oxidation.

Applying the reaction to substrates of general structure Ar-X-CH₂CH₂CH_{(OEt)₂ formed heterocyclic systems; the trapping by the sulfinate ion avoided the extensive redox disproportionation which has characterised previous acid-induced cyclisations⁹ of these precursors (Scheme 2):}

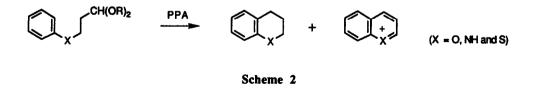
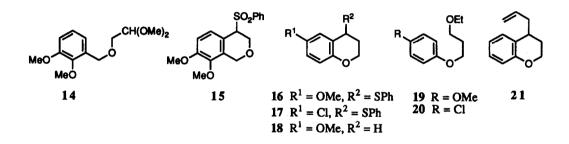


Table 1 shows that such cyclizations conducted under mild conditions in the presence of sulfinic acid salts afford good to excellent yields of the corresponding 4-(sulfonyl) substituted chromans, thiachromans and tetrahydroquinolines. Formic acid was a satisfactory medium, but in general, higher yields with shorter reaction times were obtained by adding the substrate in CH_2Cl_2 to the sulfinate salt in neat CF_3CO_2H . Highly electron-rich systems were the exception, as noted for the preparation of the 7-methoxy compound 12, where HCO_2H gave the better result. In the absence of sulfinate salts, multicomponent mixtures and/or oligomeric materials were formed. A typical procedure is as follows:

4-(4-Methylphenyl)sulfonyl-3,4-dihydrobenzo-[b]-pyran (7). Sodium *p*-toluenesulfinate hydrate (4.0 g, \sim 19 mmol) was stirred at RT in CF₃CO₂H (25 mL) for 15 min, then cooled in ice and 3-phenoxy-1,1-diethoxypropane (1.57 g, 7 mmol) in CH₂Cl₂ (5 mL) was added dropwise. The ice bath was removed and stirring was continued for 0.5 h. After dilution with CH₂Cl₂, the mixture was washed with H₂O followed by

aq. NaHCO3, dried (MgSO4) and evaporated. Recrystallization from CH2Cl2-hexanes gave the pure sulfone 7 (1.77 g; 87 %) as fibrous needles, mp 124-126 °C. ¹H NMR (CDCl₃): 8 2.23 (m, 1), 2.45 (s, 3), 2.51 (m, 1), 4.1-4.4 (m, 3), 6.8-6.9 (m, 2), 7.12 (d, 1, J = 9 Hz), 7.2-7.3 (m, 1), 7.32 (d, 2, J = 8 Hz) and 7.63 (d, 2, J = 8 Hz). Anal. Calcd. for C16H16O3S: C, 66.65; H, 5.59. Found: C, 66.44; H, 5.59.

Table 1. Synthesis of 4-(Sulfonyl) Chromans, Tetrahydroquinolines and Thiachromans.


			2-3 eq. R ² SO ₂ Na RT, CF ₃ CO ₂ H		$= R^{1} \xrightarrow[7]{8} X^{SO_{2}R^{2}}$	
Product	5 X	R ¹	R ²	t (h.)	6 - 12 Yield, % ^s	, mp, °C
6 7 8 9 10 11 12 13	0 0 5 0 0 0 NSO2Ph	H H H 6-Cl 6-OMe 7-OMe 7-OMe	Ph p-Tol Me Ph Ph Ph Ph Ph	0.5 0.5 2.0 1.0 0.25 0.25 1.0	91 87 76 73 87 92 78 92	83-86 ^b 124-126 79-81 150-152 102-104 91-93 103-105 (note d)

Notes: a. Isolated yield (based on the acetal) of chromatographically pure or recrystallized product. b. Reported¹⁰ mp 86.5-87 °C

c. In HCO₂H at 5°C. Reactions in TFA gave larger amounts of by-products. The 7-methoxy isomer 12 was the major product, and was isolated by direct crystallization after the usual workup.

d. A 6:1 mixture of the (non-crystalline) 7- and 5-methoxy isomers.¹¹

Other systems are accessible by this cyclization-trapping process: reaction of the acetal 14 with TFA-PhSO₂Na afforded the isochroman 15, mp 153-155 °C, in high yield. Limited success with different trapping agents in these processes underscores the greater generality of the sulfone method: although sulfide 16 was obtained cleanly from the appropriate 4-methoxy acetal and PhSH in TFA, the chloro analog 17 was formed in admixture with 4-ClC₆H₄OCH₂CH₂CH(SPh)₂ and other compounds, reflecting irreversible intermolecular trapping prior to cyclisation when the latter step is relatively slow. Similarly, in TFA containing Et₃SiH (4 eq.), the 4-methoxy acetal afforded a 1:1 mixture of 18 and 19, and the 4-chloro acetal gave "acyclic" product 20 exclusively. When the methoxy acetal was added to TFA alone, insoluble resinous materials were produced. Allyltrimethylsilane (in HCO₂H) was not a satisfactory trap. However, the foregoing sulfones were readily converted to 4-allyl compounds: 21 was isolated in 88% yield after treating 7 with EtAlCl₂ and excess CH₂=CHCH₂SiMe₃.

The ability of benzylic sulfones to react in this fashion^{2a} and also to undergo alkylation^{2a,12} and acylation¹⁰ via the derived carbanions enhances the synthetic potential of these carbocyclic and heterocyclic cyclization-trapping products. We will report at a later date on the extension of this chemistry to other substitution patterns and ring systems.

Acknowledgements: We thank the Physical-Analytical department for mass spectra and analyses.

References and notes:

- 1. Present address: Colgate-Palmolive Research, 909 River Road, Piscataway, NJ 08854.
- a) McCombie, S. W.; Cox, B.; Ortiz, C.; Ganguly, A. K. Synlett, 1993, 541-547. b) McCombie, S. W.; Cox, B., Lin, S-I.; Ganguly, A. K.; McPhail, A. T. Tetrahedron Lett., 1991, 32, 2083-2086. c) McCombie, S. W.; Cox, B.; Ganguly, A. K. *ibid*, 1991, 32, 2087-2090.
- 3. Balfe, M. P.; Kenyon, J.; Wicks, R. J. Chem. Soc., 1946, 807-811, and references therein.
- Davies, M. G.; White, A. M. J. Chem. Soc., 1952, 3300-3303. A similar trapping of the methylthiomethyl cation is a convenient route to MeSCH₂SO₂-p-Tol: Ogura, K.; Yahata, N.; Watanabe, J.; Takahashi, K.; Iida, H. Bull. Chem. Soc. Jpn., 1983, 56, 3543-3544.
- 5. Brown, B. R.; Shaw, M. R. J. Chem. Soc. Perkin Trans. I, 1974, 2036-2049, and references therein.
- 6. Guindon, Y.; Frenette, R.; Fortin, R.; Rokach, J. J. Org. Chem., 1983, 48, 1357-1359.
- 7. Acetal 3 was obtained in 86% yield based on unrecovered starting sulfide, at ~85% conversion.
- a) Woodward, R. B.; Eastman, R. H. J. Am. Chem. Soc., 1944, 66, 674-679. b) Clark-Lewis, J. W.; Nair, V. Aust. J. Chem., 1967, 20, 2137-2149.
- a) Tilak, B. D.; Vaidya, V. M. Tetrahedron Lett., 1963, 487-495. b) Tilak, B. D.; Ravindranathan, T.; Subbaswami, K. N. *ibid*, 1966, 1959-1963. c) Tilak, B. D.; Desai, H. S.; Deshpande, C. V.; Jain, S. K.; Vaidya, V. M. Tetrahedron, 1966, 22, 7-23. d) Tilak, B. D.; Muljiani, D. *ibid*, 1968, 24, 949-957.
- 10. Lai, S. M. F.; Orchison, J. J. A.; Whiting, D. A. Tetrahedron, 1989, 45, 5895-5906.
- Samples of the pure isomers were separated and characterised spectroscopically. Major, 7-methoxy isomer, ¹H NMR (CDCl₃): δ 1.72 (m, 1), 2.27 (m, 1), 3.73 (m, 1), 3.80 (s, 3), 4.04 (t, 1, J = 4.2 Hz), 4.12 (m, 1), 6.62 (dd, 1, J = 8.6, 2.5 Hz) and 7.1-7.7 (m, 12H). Minor, 5-methoxy isomer, ¹H NMR (CDCl₃): δ 1.95 (m, 1), 2.93 (m, 1), 3.10 (s, 3), 4.2-4.5 (m, 2), 4.76 (br. d, 1, J = 4.9 Hz), 6.28 (d, 1, J = 8.1 Hz), 7.14 (t, 1, J = 8.5 Hz), 7.3-7.7 (m, 9) and 7.90 (d, 2, J = 9.2 Hz).
- 12. Biellmann, J. F.; Ducep, J-B. Org. React., 1989, 27, 1-345.

(Received in USA 30 August 1993; accepted 8 October 1993)