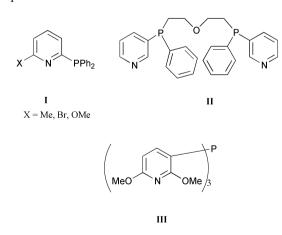
FULL PAPER

Synthesis and structural study of late transition metal complexes of *N*-[(diphenylphosphino)methyl]-2-pyridinamine and *N*-cyclohexyl-*N*-[(diphenylphosphino)methyl]-2-pyridinamine

Hai-Bin Song,^a Zheng-Zhi Zhang^b and Thomas C. W. Mak^{*a}

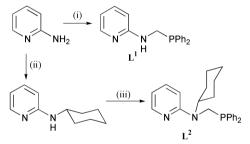
^a Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China. E-mail: tcwmak@cuhk.edu.hk

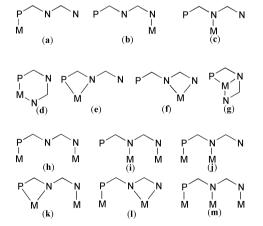

^b State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China

Received 9th October 2001, Accepted 23rd January 2002 First published as an Advance Article on the web 7th March 2002

The reaction of *N*-[(diphenylphosphino)methyl]-2-pyridinamine and *N*-cyclohexyl-*N*-[(diphenylphosphino)methyl]-2-pyridinamine with palladium(II), copper(I) and silver(I) salts and iron pentacarbonyl in different stoichiometric ratios yielded a series of complexes that display various coordination modes, including a novel P,N(amine),-N(pyridyl)-bridging mode in a dinuclear silver complex which is consolidated by the argentophilic interaction.

Introduction


There has been continuing interest in the synthesis and chemistry of hemilabile ligands in view of their wide use in coordination, organometallic and catalyst chemistry.1 Pyridinephosphine ligands, which contain a soft Lewis base (the phosphorus atom) and a hard Lewis base (the nitrogen atom), have attracted particular attention in recent years,² as the electronic differentiation of these donor atoms helps to stabilise various types and oxidation states of metals. One prominent example is 2-(diphenylphosphino)pyridine, Ph₂Ppy, which displays several ligation modes to transition metals: P-coordination, N-coordination, P,N-chelating and P,N-bridging,³ generating complexes that exhibit different spectroscopic properties, reactivities and applications. The functionalisation of pyridinephosphines can lead to enhancement in catalytic reactivity.⁴ For instance, higher activity and selectivity is exhibited by the substituted ligand system I relative to Ph₂Ppy in the palladiumcatalysed carbonylation of alkynes,^{4f-g} and by II relative to Ph₂P(3-py) in the rhodium-catalysed hydroformylation of 1-octene.^{4h} Furthermore, the introduction of methoxy groups in the 2- and 6-positions in III facilitates the rhodium-catalysed hydrogenation of olefins, whereas the parent pyridylphosphine complexes are inactive.4


The functionalised pyridinamine ligands N-[(diphenyl-phosphino)methyl]-2-pyridinamine (L¹)^{5a} and N-cyclohexyl-

1336 J. Chem. Soc., Dalton Trans., 2002, 1336–1343

N-[(diphenylphosphino)methyl]-2-pyridinamine (L²)^{5b} were prepared recently according to Scheme 1. The possible coordination modes of this kind of ligands are shown in Scheme 2. The

Scheme 1 Reagents: (i) Ph_2PCH_2OH ; (ii) H_2SO_4 , $C_6H_{11}OH$; (iii) Ph_2PH , $(CH_2O)_n$.

Scheme 2 Possible coordination modes of phosphinopyridinamine ligands.

P,N(pyridyl)-chelating coordination mode (d) of L^1 and the P,N(pyridyl)-bridging mode (h) of L^2 have been substantiated in previous works.⁵

Herein, we react L^1 and L^2 with iron pentacarbonyl and palladium(II), copper(I) and silver(I) salts in different stoichiometric ratios to form a series of complexes in which the ligands adopt a variety of new coordination modes, namely the

Experimental

General

Unless otherwise stated, all reactions were performed under a nitrogen atmosphere using Schlenk techniques. The solvents were purified by standard methods. Infrared spectra were recorded on a Nicolet Impact 420 FT-IR spectrometer from KBr discs. Ligands L^1 and L^2 were prepared by literature methods.⁵

CAUTION! While none of the perchlorate complexes proved to be shock sensitive, appropriate precautions should always be taken when working with them.

Preparations

[Ph₂P(O)CH₂NH(C₅H₅N)]ClO₄, **1.** 0.08 g (0.27 mmol) L¹ and 0.1 g (0.27 mmol) [Co(H₂O)₆](ClO₄)₂ were mixed in 10 cm³ CH₃CN in air and the solution was stirred overnight. The solution was concentrated and addition of diethyl ether gave colorless crystals of **1** in 50% yield. Found: C, 52.83; H, 4.44; N, 6.63; calc. for C₁₈H₁₈N₂O₄PCl: C, 52.89; H, 4.44; N, 6.85%.

trans-Fe(CO)₃(L¹)₂, **2.** This compound was prepared by the published procedure for *trans*-Fe(CO)₃(PR₃)₂⁶ and single crystals were recrystallised from CH₂Cl₂-CH₃OH. Yield 60%. Found: C, 64.51; H, 4.72; N, 7.83; calc. for C₃₉H₃₄N₄O₃P₂Fe: C, 64.65; H, 4.73; N, 7.73%. IR ν (CO): 1880 cm⁻¹.

[Pd(L¹)₂](CIO₄)₂, 3. To a stirred solution of 0.2 g (0.68 mmol) of L¹ in 10 cm³ of CH₂Cl₂ was added 0.1 g (0.34 mmol) of Na₂PdCl₄ at ambient temperature. After stirring the solution for *ca.* 30 min, the precipitated NaCl was filtered off and to the clear filtrate was added TICIO₄ (0.21 g, 0.34 mmol). After stirring the yellow solution for 30min, the white precipitate of TICl was filtered off and the filtrate concentrated *in vacuo* to *ca.* 2 cm³. Subsequent diethyl ether diffusion into the solution afforded yellow crystals of **3** in 80% yield. Found: C, 48.65; H, 3.86; N, 6.29; calc. for C₃₆H₃₄N₄O₈P₂Cl₂Pd: C, 48.58; H, 3.85; N, 6.30%.

 $[PdCl_2(\mu-L^1)]_2$, 4. 0.1 g (0.34 mmol) L¹ and 0.1 g (0.34 mmol) Na₂PdCl₄ were mixed in 10 cm³ CH₂Cl₂ and the solution was stirred for 20 min. The undissolved material was filtered off and the filtrate was concentrated *in vacuo* to *ca*. 2 cm³. Diffusion of ethanol into this solution gave yellow crystals of 4·2CH₂Cl₂ in 65% yield. Found: C, 46.12; H, 3.61; N, 5.80; calc. for C₁₈H₁₇N₂PCl₂Pd: C, 46.04; H, 3,65; N, 5.97%.

[Cu(L¹)₂]ClO₄, **5**. 0.1 g (0.3 mmol) [Cu(CH₃CN)₄]ClO₄ was dissolved in 5 cm³ CH₃CN and a solution of 0.19 g (0.65 mmol) L¹ in 5 cm³ CH₂Cl₂ was added with stirring. The reaction mixture stirred for 20 min and concentrated *in vacuo* to *ca.* 2 cm³. Subsequent diethyl ether diffusion into the solution afforded colorless crystals of **5** in 85% yield. Found: C, 59.67; H, 4.54; N, 7.47; calc. for C₃₆H₃₄N₄O₄P₂ClCu: C, 59.83; H, 4.58; N, 7.50%.

 $[Ag(\mu-L^1)(CH_3CN)]_n(CIO_4)_n$, 6. 0.1 g (0.48 mmol) AgClO₄ was dissolved in 5 cm³ CH₃CN and a solution of 0.14 g (0.48 mmol) L¹ in 5 cm³ CH₃CN was added with stirring. After stirring for 20 min, the solution was concentrated *in vacuo* to *ca*. 2cm³ and then diethyl ether added to give colorless crystals of 6 in 60% yield. Found: C, 44.13; H, 3.69; N, 7.57; calc. for C₂₀H₂₀N₃O₄PClAg: C, 44.43; H, 3.73; N, 7.77%.

 $[Ag(L^1)_2(2-Py-NH_2)]ClO_4$, 7. 0.29 g (1 mmol) L¹, 0.1 g (0.48 mmol) AgClO₄ and 0.045 g (0.48 mmol) 2-aminopyridine were added to 10 cm³ CH₃CN. The mixture was stirred for 10 min, then the solution was concentrated to 2 cm³ and diethyl ether was diffused into it to give colorless crystals of 7·CH₃CN in 50% yield. Found: C, 55.20; H, 4.65; N, 9.60; calc. for C₄₁H₄₀N₆O₄P₂ClAg: C, 55.58; H, 4.55; N, 9.49%.

Pd(L²)Cl₂, 8. 0.13 g (0.34 mmol) L² and 0.1 g (0.34 mmol) Na₂PdCl₄ was mixed together in 10 cm³ CH₂Cl₂. The solution was stirred for 20 min and then filtered to remove undissolved material. The solution was concentrated *in vacuo* to *ca.* 1–2 cm³ and then EtOH diffused into the solution to afford yellow crystals of **8.** Found: C, 52.49; H, 4.97; N, 5.05; calc. for C₂₄H₂₇N₂PCl₂Pd: C, 52.24; H, 4.93; N, 5.08%.

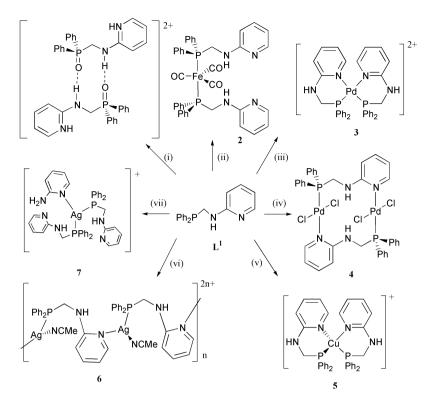
 $[Cu(L^2)_2]CIO_4$, 9. 0.1 g (3 mmol) $[Cu(CH_3CN)_4]CIO_4$ was added to a solution of 0.11 g (0.3 mmol) L² in CH₂Cl₂ (10 cm³) and the mixture was stirred until all the $[Cu(CH_3CN)_4]CIO_4$ dissolved. Then, the clear solution was concentrated *in vacuo* to *ca.* 2 cm³ and slow diffusion of diethyl ether into it gave colorless single crystals of 9 suitable for X-ray analysis in 85% yield. Found: C, 62.99; H, 5.97; N, 6.05; calc. for C₄₈H₅₄N₄O₄P₂ClCu: C, 63.22; H, 5.97; N, 6.15%.

Ag(L²)ClO₄, 10. 0.1 g (0.48 mmol) AgClO₄ and 0.18 g (0.48 mmol) L² were mixed in 10 cm³ CH₃CN–CH₂Cl₂ (1 : 1) with stirring. After all the AgClO₄ had dissolved, the solution was concentrated *in vacuo* to *ca.* 2cm³ and diethyl ether diffused into it to give needle-like microcrystals of **10** in 80% yield (Found: C, 49.59; H, 4.75; N, 5.09; calc. for C₂₄H₂₇N₂O₄P₂ClAg: C, 49.55; H, 4.50; N, 4.82%), together with a small amount of plate-like crystals of the solvate **11**·CH₂Cl₂, $[Ag_2(\mu-L^2)_2]$ - $[Ag(L^2)_2](ClO_4)_3$ ·CH₂Cl₂.

X-Ray crystallography

For each of complexes 2, 3, 4·2CH₂Cl₂, 5, 6, 9 and 11·CH₂Cl₂, a selected single crystal was mounted on a Bruker SMART 1000 CCD diffractometer operating at 50 kV and 30 mA using Mo-Ka radiation (0.71073 Å). Data collection and reduction were performed using the SMART and SAINT software,⁷ with frames of 0.3° oscillation in the θ range $1.5 < \theta < 28^{\circ}$ (for 11·CH₂Cl₂, $\theta < 26^{\circ}$). An empirical absorption correction was applied using the SADABS program.8 The data for 1, 7. CH₃CN and 8 were collected at 293 K in the variable ω -scan mode on a Siemens R3m/V four-circle diffractometer using Mo-K α radiation (50 kV, 30 mA; $2\theta_{max} = 52^{\circ}$). An empirical absorption correction was applied using ψ -scan data. The structures were solved by direct methods and all non-hydrogen atoms were subjected to anisotropic refinement by full-matrix least squares on F^2 using the SHELXTL package.⁹ All hydrogen atoms were generated geometrically (C-H bond lengths fixed at 0.96 Å), assigned appropriate isotropic thermal parameters and included in structure factor calculations. Crystal structure data and refinement details are summarised in Table 1.

CCDC reference numbers 171811-171820.


See http://www.rsc.org/suppdata/dt/b1/b109191n/ for crystallographic data in CIF or other electronic format.

Results and discussion

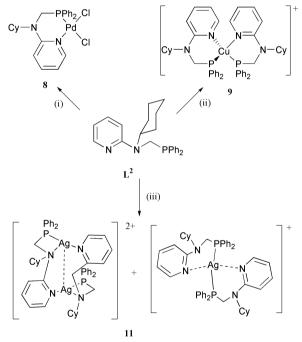

The reactions of *N*-[(diphenylphosphino)methyl]-2-pyridinamine, L¹, and *N*-cyclohexyl-*N*-[(diphenylphosphino)methyl]-2pyridinamine, L², with different metal salts are shown in Scheme 3 and 4, respectively. When L¹ is mixed with Co(ClO₄)₂· $6H_2O$ in air, the oxidation state of the phosphorus atom is converted from III to V, and the pyridine ring is protonated to form a perchlorate salt, namely compound **1**. The structure of **1**

Table 1 Crystal data and refinement details for the studied complexes

1 able 1 Crystal data and rennement details for the studied complexes	and rennement det	alls for the studied c	complexes							
Complex	1		3	4·2CH ₂ Cl ₂	5	9	7-CH ₃ CN	8	6	11-CH ₂ Cl ₂
Formula	C ₁₈ H ₁₈ CIN ₂ -	C ₃₉ H ₃₄ FeN ₄ -	C ₃₆ H ₃₄ Cl ₂ N ₄ O ₈ -	C ₃₈ H ₃₈ Cl ₈ N ₄ -	C ₃₆ H ₃₄ ClCuN ₄ -	C ₂₀ H ₂₀ AgCIN ₃ -	C ₄₃ H ₄₃ AgCIN ₇ -	C ₂₄ H ₂₇ Cl ₂ N ₂ -	C ₄₈ H ₅₄ ClCuN ₄ -	C ₉₇ H ₁₁₀ Ag ₃ Cl ₅ -
	0_5P		P_2Pd	P_2Pd_2	O_4P_2	0_4P	O_4P_2	PPd	O_4P_2	$N_8O_{12}P_4$
Μ	408.76	724.49	889.91	1109.03	747.60	540.58	927.10	551.75	911.88	2204.67
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic	Orthorhombic	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/n$ (no. 14)	C2/c (no. 15)	$P2_1/n$ (no. 14)	$P\overline{I}$ (no. 2)	$Pca2_1$ (no. 29)	<i>Pn</i> (no. 7)	<i>P</i> 1 (no. 2)	<i>P</i> 2 ₁ / <i>n</i> (no. 14)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	C2 (no. 5)
Crystal size/mm	$0.40 \times 0.30 \times$	$0.45 \times 0.25 \times$	$0.40 \times 0.25 \times$	$0.30 \times 0.24 \times$	$0.60 \times 0.40 \times$	$0.42 \times 0.34 \times$	$0.60 \times 0.56 \times$	$0.54 \times 0.42 \times$	$0.42 \times 0.38 \times$	$0.38 \times 0.20 \times$
•	0.30	0.18	0.20	0.20	0.40	0.30	0.50	0.40	0.20	0.16
a/Å	12.375(2)	21.007(5)	9.644(2)	9.703(2)	15.255(1)	11.163(3)	11.160(2)	9.21992)	15.0567(8)	21.413(3)
b/Å	9.4683(9)	8.964(2)	21.221(4)	10.229(2)	11.3123(9)	17.485(4)	11.307(2)	20.438(3)	11.0961(6)	9.531(2)
$c/{ m \AA}$	16.821(2)	19.136(5)	18.761(3)	12.939(3)	20.678(2)	11.486(3)	17.485(3)	12.965(2)	26.842(1)	26.950(5)
al°				97.913(5)			92.01(1)			
B1° v/°	97.30(1)	102.400(5)	98.442(4)	103.563(4) 113.954(4)		91.452(5)	94.21(2) 104.60(1)	105.78(1)	90.723(1)	110.207(4)
U/Å ³	1954.9(4)	3519.4(16)	3798.0(12)	1101.0(4)	3568.3(5)	2241.1(10)	2126.2(6)	2350.7(6)	4484.2(4)	5161.7(14)
Z	4	4		1	4	4	2	4	4	5
$D_c/{ m gcm^{-3}}$	1.389	1.367	1.556	1.673	1.392	1.602	1.448	1.559	1.351	1.419
F(000)	848	1504	1808	552	1544	1088	952	1120	1912	2260
$\mu(Mo-K\alpha)/mm^{-1}$	0.309	0.563	0.770	1.408	0.821	1.121	0.663	1.099	0.667	0.815
Total refl.	4952	11336		7548	23691	15446	9709	5765	29874	12559
Unique refl. (R_{int})	3844 (0.0156)	4220 (0.0426)	9136 (0.0281)	5232 (0.0281)	8170 (0.0273)	7140(0.0416)	8349 (0.0224)	4576 (0.0383)	10772 (0.0573)	9356(0.0463)
Observed refl.	2706	2786		3574	6619	4771	5597	2855	6253	5844
Parameters	272	223		244	434	558	533	272	541	597
Goodness of fit	1.103	0.947	0.919	0.932	0.944	0.950	1.026	0.978	0.913	0.952
$\frac{R1}{R1} \frac{wR2}{wR2} \left[I > 2\sigma(I) \right]^{a}$	0.0503, 0.1070 0.0808, 0.1195	0.0376, 0.0917 0.0641 0.1021	0.0426, 0.0909 0.0842, 0.1115	0.0458, 0.1082 0.0732, 0.1179	0.0297, 0.0630 0.0417, 0.0669	0.0503, 0.1345 0.0800, 0.1489	0.0561, 0.1222 0.0957, 0.1395	0.0465, 0.0757 0.1015, 0.0890	0.0485, 0.1112 0.0919 0.1286	0.0768, 0.1781 0.1180 0.2047
$a D1 - \nabla AEI - E V E$	$\frac{1}{2}$	- 1E \2 18 18 18 18				60000				
$\mathbf{K} \mathbf{I} = \mathbf{Z} (\mathbf{r}_{0} - \mathbf{r}_{0} \mathbf{Z} \mathbf{r}_{0} ; W \mathbf{K} \mathbf{Z} = \{ W \mathbf{Z} (\mathbf{r}_{0} - \mathbf{r}_{0}) \mathbf{Z} \mathbf{r}_{0} \}^{-1}$	$ 0, MVZ = \{ M[\Delta l x^0]$	— r _c) j'∠ r _o } .								

Scheme 3 Reactions of N-[(diphenylphosphino)methyl]-2-pyridinamine, L¹. Reagents: (i) Co(ClO₄)₂·6H₂O; (ii) Fe(CO)₅/KOH; (iii) Na₂PdCl₄/ TlClO₄; (iv) Na₂PdCl₄; (v) [Cu(CH₃CN)₄]ClO₄; (vi) AgClO₄/(2-py)NH₂.

Scheme 4 Reactions of *N*-cyclohexyl-*N*-[(diphenylphosphino)methyl]-2-pyridinamine, L². Reagents: (i) Na₂PdCl₄; (ii) [Cu(CH₃CN)₄]ClO₄; (iii) AgClO₄.

as determined by X-ray crystallography (Fig. 1) confirms the presence of a tertiary phosphine oxide with a P=O bond length of 1.488(2) Å, which is consistent with appreciable double bond character. A pair of cations is linked into a pseudo tenmembered ring dimer through intermolecular P=O ··· H–N hydrogen bonding (O ··· N 2.7, H ··· O 1.956 Å; N–H ··· O 164.7°). Other examples of P=O ··· H–N hydrogen-bonded dimers in Ph₂P(O)CH₂N(H)C₅H₃N(5-Cl)^{10a} and [H{Ph₂P(O)-CH₂(C₄H₈NO)}]₂(Hg₂I₆)^{10b} have been reported.

The reaction of L^1 or L^2 with KOH and Fe(CO)₅ in refluxing ethanol for 24 h gave yellow precipitates formulated as *trans*-Fe(CO)₃(L^1)₂, **2** and *trans*-Fe(CO)₃(L^2)₂, respectively.^{5b} The IR

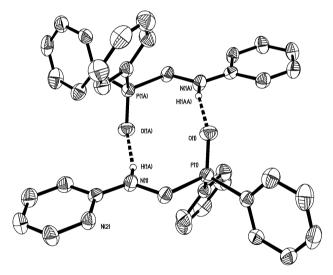
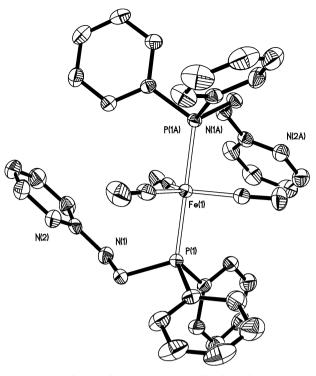



Fig. 1 Perspective drawing (35% thermal ellipsoids) of the cationic dimer in compound 1. Selected bond lengths (Å) and angles (°): P(1)–O(1) 1.488(2), P(1)–C(1) 1.791(3), P(1)–C(7) 1.798(3), P(1)–C(13) 1.813; O(1)–P(1)–C(1) 113.0(1), O(1)–P(1)–C(7) 112.5(1), O(1)–P(1)–C(13) 112.5(2), C(1)–P(1)–C(7) 108.7(2), C(1)–P(1)–C(13) 106.8(2), C(7)–P(1)–C(13) 102.8(1).

spectra of both complexes have intense carbonyl absorptions at 1880 cm⁻¹, indicating that the local symmetry at the Fe atom is near D_{3h} . In the crystal structure of **2**, a crystallographic C_2 axis bisects the planar Fe(CO)₃ unit of the molecule (Fig. 2). The coordination environment about the iron atom is best described as an FeP₂C₃ trigonal bipyramid with the phosphine ligands occupying axial positions. The P–Fe–P angle of 179.44(3)° is comparable to those in *trans*-Fe(CO)₃(Ph₂Ppym)₂ [174.2(1)],¹¹ *trans*-Fe(CO)₃(Ph₂Ppy)₂ [177.1(1)]^{3d} and *trans*-Fe(CO)₃(Ph₂-PCH₂mor)₂ [178.24(3)°]^{10b} The three C–Fe–C angles [119.5(2), 120.26(8) and 120.26(8)°] are very close to the ideal value of 120°. *trans*-Fe(CO)₃(µ-L²)₂ was successfully reacted with [Cu(CH₃CN)₄]ClO₄ to form a heterobimetallic seven-membered macrocyclic complex with a Fe(o) \rightarrow Cu(I) donor–acceptor bond.^{5b} However, the reaction of **2** with copper(I) salts did not

Fig. 2 Perspective drawing (35% thermal ellipsoids) of the molecular structure of **2**. Selected bond lengths (Å) and angles (°): Fe(1)–C(1) 1.781(3), Fe(1)–C(2) 1.766(2), Fe(1)–P(1) 2.1958(6); C(2)–Fe(1)–C(1) 120.26(8), C(2A)–Fe(1)–C(2) 119.5(2), C(1)–Fe(1)–P(1) 89.72(2), C(2)–Fe(1)–P(1) 87.38(7), C(2A)–Fe(1)–P(1) 92.90(7), P(1A)–Fe(1)–P(1) 179.44(3). Symmetry code: -x, y, 1/2 - z.

afford an analogous stable binuclear complex. This seems to be attributable to the greater bulk of L^2 as compared to L^1 , since the pyridine ring in L^1 can rotate more freely than that in L^2 .

The reaction of L¹ and Na₂PdCl₄ in a 2 : 1 molar ratio in CH₂Cl₂ gave a yellow solution and a NaCl precipitate. When the filtrate was treated with two equivalents of TlClO₄ to remove the chloride ligands, the complex $[Pd(L^1)_2](ClO_4)_2$, **3**, was formed. The dication has a near square-planar environment around the Pd center with two *cis* P,N-chelating ligands (Fig. 3). The Pd–P and Pd–N distances are similar to those found in palladium phosphine and pyridylphosphine complexes. The planarity of the coordination geometry around the palladium atom was accessed by fitting a least-squares plane to the atoms Pd(1), P(1), P(2), N2 and N4, which showed a large mean deviation of 0.25 Å. The plane defined by Pd and the coordinated P atoms makes a dihedral angle of 21.9° with the PdN₂ mean plane.

The reaction of L¹ and Na₂PdCl₄ in a 1 : 1 molar ratio in CH_2Cl_2 yielded a yellow solution from which $Pd_2Cl_4(\mu-L^1)_2$. 2CH₂Cl₂, 4·2CH₂Cl₂, was isolated. Complex 4 consists of a bimetallic twelve-membered ring located at an inversion center (Fig. 4). The chloride ligands are in a trans arrangement about each palladium atom, and a pair of bidentate L¹ ligands in the head-to-tail configuration bridge the two palladium atoms. The Cl(1)-Pd(1)-Cl(2) [174.52(5)] and P-Pd-N [176.6(1)°] angles are close to linear, and the Pd-P [2.252(1)], Pd-N [2.116(4)] and Pd-Cl [2.300(1) and 2.303(1) Å] bond distances are quite normal. The least-squares plane through the atoms Pd(1), Cl(1), Cl(2), P(1) and N(1A) has a mean deviation of 0.05 Å. The dihedral angle between the plane Pd(1)-Cl(1)-Cl(2)-P(1)-N(1A) and the pyridine ring is 74.5°. The non-bonded Pd \cdots Pd separation in this compound is 4.594 Å, which is slightly shorter than that in twelve-membered ring dipalladium complexes linked by a rigid phosphine ligand (4.710 Å).¹²

The complex $[Cu(L^1)_2]ClO_4$, **5**, was obtained from the reaction of L¹ with $[Cu(CH_3CN)_4]ClO_4$ in a 2 : 1 molar ratio in CH₃CN–CH₂Cl₂. The structure of the cation is shown in Fig. 5.

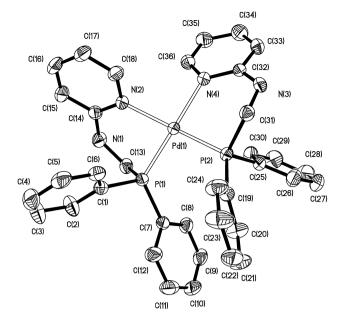
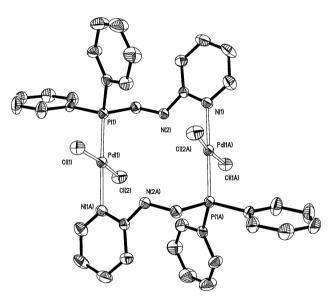



Fig. 3 Perspective drawing (35% thermal ellipsoids) of the dication in compound 3. Selected bond lengths (Å) and angles (°): Pd(1)–N(2) 2.131(3), Pd(1)–N(4) 2.175(3), Pd(1)–P(1) 2.231(1), Pd(1)–P(2) 2.235(1), N(2)–Pd(1)–N(4) 93.1(1); N(2)–Pd(1)–P(1) 83.83(8), N(4)– Pd(1)–P(1) 161.05(9), N(2)–Pd(1)–P(2) 166.22(9), N(4)–Pd(1)–P(2) 89.09(8), P(1)–Pd(1)–P(2) 98.37(4).

Fig. 4 Perspective drawing (35% thermal ellipsoids) of the dinuclear molecule of **4** in **4**·2CH₂Cl₂. Selected bond lengths (Å) and angles (°): Pd(1)–N(1A) 2.116(4), Pd(1)–P(1) 2.252(1), Pd(1)–Cl(2) 2.300(1), Pd(1)–Cl(1) 2.303(1); N(1A)–Pd(1)–P(1) 176.6(1), N(1A)–Pd(1)–Cl(2) 88.3(1), P(1)–Pd(1)–Cl(2) 88.26(5), N(1A)–Pd(1)–Cl(1) 90.2(1), P(1)–Pd(1)–Cl(1) 93.29(5), Cl(2)–Pd(1)–Cl(1) 174.52(5). Symmetry code: 1 - x, 1 - y, 1 - z.

The copper atom has a distorted tetrahedral geometry, in which each L¹ ligand chelates the metal center through its phosphorus and pyridyl nitrogen atoms. The Cu–P [2.2282(6) and 2.2353(6)] and Cu–N [2.113(2) and 2.171(2) Å] bond lengths fall within the normal ranges for copper phosphine and pyridine complexes. The bond angles at the copper atom vary from 94.58(7) to 128.74(3)°.

The reaction of L¹ with silver perchlorate in a 1 : 1 molar ratio in CH₃CN–CH₂Cl₂ leads to rapid formation of a colorless solution, from which $[Ag(CH_3CN)(\mu-L^1)]_n(ClO_4)_n$, 6, was isolated. The ligand L¹ bridges consecutive metal centers *via* its P,N(pyridyl)-donor sites. Each of the two independent silver centers is coordinated by a P atom from one L¹ ligand and a pyridyl N atom from another, resulting in the formation of a

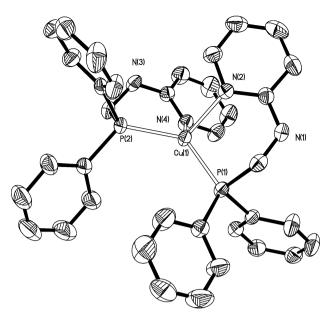
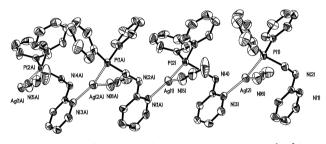



Fig. 5 Perspective drawing (35% thermal ellipsoids) of the cation in compound 5. Selected bond lengths (Å) and angles (°): Cu(1)–N(2) 2.171(2), Cu(1)–N(4) 2.113(2), Cu(1)–P(1) 2.2282(6), Cu(1)–P(2) 2.2353(6); N(4)–Cu(1)–N(2) 94.58(7), N(4)–Cu(1)–P(1) 120.45(5), N(2)–Cu(1)–P(1) 96.37(5), N(4)–Cu(1)–P(2) 96.89(5), N(2)–Cu(1)–P(2) 115.61(5), P(1)–Cu(1)–P(2) 128.74(3).

Fig. 6 Structure of the polymeric chain $[Ag_3(CH_3CN)_2(\mu-L^1)_2]_n^{2n+}$ in **6**. Selected bond lengths (Å) and angles (°): Ag(1)–N(1A) 2.185(7), Ag(1)–P(2) 2.359(2), Ag(1)–N(5) 2.60(1), Ag(2)–N(3) 2.193(8), Ag(2)–P(1) 2.369(2), Ag(2)–N(6) 2.55(1); N(1A)–Ag(1)–P(2) 166.0(2), N(1A)–Ag(1)–N(5) 92.1(3), P(2)–Ag(1)–N(5) 101.7(2), N(3)–Ag(2)–P(1) 159.1(2), N(3)–Ag(2)–N(6) 94.6(3), P(1)–Ag(2)–N(6) 105.4(3). Symmetry code: *x*, *y*, *z* = 1.

cationic polymeric chain running in the direction of the *c* axis (Fig. 6). The highly distorted trigonal planar coordination environment about each Ag(I) atom is completed by a CH₃CN ligand, with a slightly longer Ag–N bond [2.60(1) and 2.55(1) Å] that stabilises the resulting 16-electron configuration. The three bond angles at Ag(1) and Ag(2) sum to 359.8 and 359.2°, respectively. The non-bonded Ag \cdots Ag separations in the polymeric chain are 5.827 and 6.019 Å, respectively. The crystal structure of **6** consists of the packing of such chains and the perchlorate ions.

The reaction of L¹ with AgClO₄ in a 2 : 1 molar ratio in the presence of 2-aminopyridine afforded the mononuclear complex $[Ag(L^1)_2(2-Py-NH_2)]ClO_4$, 7 (Fig. 7). The silver atom in 7 is coordinated by two L¹ ligands and one 2-aminopyridine, with fairly normal Ag–P and Ag–N bond lengths. The three P(1)–Ag(1)–N(6), P(2)–Ag(1)–N(6) and P(1)–Ag(1)–P(2) [119.1(1), 112.9(1) and 127.99(5)°] bond angles are not far from the ideal value of 120°, which indicates trigonal planar coordination geometry at the silver atom.

The reaction of *N*-cyclohexyl-*N*-[(diphenylphosphino)methyl]-2-pyridinamine, L², with Na₂PdCl₄ in a 1 : 1 molar ratio gave a yellow solution from which the complex PdCl₂(L²), **8**, was isolated. The L² ligand chelates the palladium atom through its P and pyridyl N atoms, with two chloride ligands arranged in *cis* positions (Fig. 8). The Pd–P and Pd–N distances

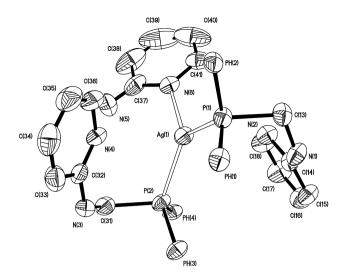


Fig. 7 Perspective drawing (35% thermal ellipsoids) of the cation in compound 7·CH₃CN. Selected bond lengths (Å) and angles (°): Ag(1)–N(6) 2.350(4), Ag(1)–P(1) 2.437(1), Ag(1)–P(2) 2.448(1); N(6)–Ag(1)–P(1) 119.1(1), N(6)–Ag(1)–P(2) 112.9(1), P(1)–Ag(1)–P(2) 127.99(5).

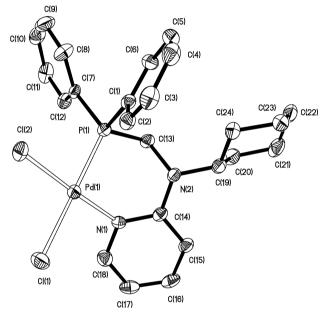


Fig. 8 Perspective drawing (35% thermal ellipsoids) of the molecular structure of compound 8. Selected bond lengths (Å) and angles (°): Pd(1)-N(1) 2.105(4), Pd(1)-P(1) 2.192(1), Pd(1)-Cl(2) 2.290(1), Pd(1)-Cl(1) 2.405(1); N(1)-Pd(1)-P(1) 92.5(1), N(1)-Pd(1)-Cl(2) 174.0(1), P(1)-Pd(1)-Cl(2) 84.02(5), N(1)-Pd(1)-Cl(1) 92.5(1), P(1)-Pd(1)-Cl(1) 171.78(6), Cl(2)-Pd(1)-Cl(1) 91.60(5).

are similar to those seen in palladium phosphine and pyridylphosphine complexes. The least-squares plane through the atoms Pd(1), P(1), N(1), Cl(1) and Cl(2) shows a mean deviation of 0.09 Å. The configuration at the tertiary amino nitrogen atom is almost planar, as its deviation from the plane of its three-bonded carbon atoms is 0.22 Å. The dihedral angle of this plane and the pyridine ring is 27.4° , which indicates that the lone pair electron of the tertiary amino nitrogen atom is significantly conjugated with the pyridine ring.

The compound $[Cu(L^2)_2]ClO_4$, **9**, was obtained from the reaction of L^2 with $[Cu(CH_3CN)_4]ClO_4$ in a 2 : 1 molar ratio in CH₂Cl₂. The structure of the cation is shown in Fig. 9. The copper atom has a distorted tetrahedral geometry, in which each L^2 ligand chelates the metal center through its phosphorus atom and nitrogen atom in the pyridine ring. The Cu–P [2.2086(7) and 2.2279(7)] and Cu–N [2.107(2) and 2.181(2) Å] bond lengths fall within the normal bond ranges for copper phosphine and pyridine complexes. The bond angles at the

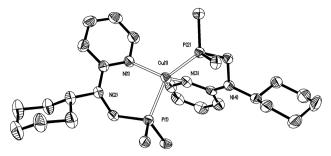
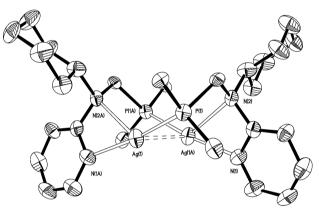



Fig. 9 Perspective drawing (35% thermal ellipsoids) of the cation in compound 9. Selected bond lengths (Å) and angles (°): Cu(1)–N(1) 2.107(2), Cu(1)–N(3) 2.181(2), Cu(1)–P(2) 2.2086(7), Cu(1)–P(1) 2.2279(7); N(1)–Cu(1)–N(3) 99.18(9), N(1)–Cu(1)–P(2) 123.96(7), N(3)–Cu(1)–P(2) 94.58(6), N(1)–Cu(1)–P(1) 95.04(6), N(3)–Cu(1)–P(1) 104.13(6), P(2)–Cu(1)–P(1) 133.34(3).

copper atom vary from 94.58(6) to $133.34(3)^{\circ}$. The configuration at the tertiary amino nitrogen atom is nearly planar, with its lone pair electrons fully conjugated with the pyridine ring.

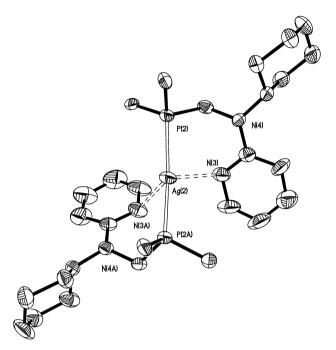

The reaction of L² with AgClO₄ in a 1 : 1 molar ratio in CH₃CN–CH₂Cl₂ affords needle-like microcrystals of **10**, of stoichiometry Ag(L²)ClO₄ by elemental analysis, plus a small quantity of plate-like crystals, which were subsequently shown by X-ray analysis to be a solvate with the structural formula $[Ag_2(\mu-L^2)_2][Ag(L^2)_2](ClO_4)_3 \cdot CH_2Cl_2$, **11** \cdot CH₂Cl₂. The $[Ag_2(\mu-L^2)_2]^{2+}$ dication has crystallographic C_2 symmetry with a pair of P,N(pyridyl)-bidentate L² ligands bridging the silver atoms in a head-to-tail fashion (Fig. 10). Notably, the tertiary amino N

Fig. 10 Perspective drawing (35% thermal ellipsoids) of the dinuclear cation $[Ag_2(\mu-L^2)_2]^{2+}$ in compound **11**·CH₂Cl₂. Selected bond lengths (Å) and angles (°): Ag(1)–N(1A) 2.252(9), Ag(1)–P(1) 2.372(3), Ag(1)–N(2A) 2.603(8), Ag(1)–Ag(1A) 2.890(2); N(1A)–Ag(1)–P(1) 169.7(2), N(1A)–Ag(1)–N(2A) 54.6(3), P(1)–Ag(1)–N(2A) 122.7(2), N(1A)–Ag(1)–Ag(1A) 100.9(2), P(1)–Ag(1)–Ag(1A) 88.60(7), N(2A)–Ag(1)–Ag(1A) 87.9(2). Symmetry code: -x + 1, y, -z.

atom of each L^2 is coordinated to a silver atom with Ag-N = 2.603(9) Å. This distance is longer than those in silver tertiary amine complexes, but shorter than the sum of the van der Waals' radii of silver and nitrogen atoms. Furthermore, the amino nitrogen atom is displaced by 0.39 Å from the plane of its three-bonded carbon atoms, and the dihedral angle of this plane and the pyridine ring (99.9°) is much larger than those in complexes 8, 9 and the cation $[Ag(L^2)_2]^+$ in 11·CH₂Cl₂. This means that its lone pair electrons are no longer conjugated with the pyridine ring, but involved in coordination with the silver atom, although the binding is rather weak. The Ag-P and Ag-N(pyridyl) bonds fall in the normal ranges for silver phosphine and pyridine complexes. In this dimeric cation, the Ag \cdots Ag distance of 2.890(2) Å is comparable to twice the metallic radius of silver (2.89 Å) and the corresponding N', N'-bis(salicylidene)-1,4-diaminobutane],^{13a} 2.936(1) -2.960(1) Å in $[Ag_2(\mu-dcpm)_2]^+$ [dcpm = bis(dicyclohexylphosphino)methane],^{13b} 2.7–3.0 Å in polyhedral silver cages each encapsulating a $C_2^{2^-}$ anion ($C_2@Ag_n$, n = 6, 7, 8, 9)^{13d} and 2.953(2)–2.986(2) Å in the silver alkynyl cage compounds [Ag₁₄(μ -C=C-*t*Bu)₁₂X]Y (X = Cl, Br; Y = OH, BF₄).^{13e} These distances are suggestive of significant argentophilic interaction between the silver(1) centers,¹³ so this type of metallophilic d¹⁰–d¹⁰ interaction also exists in the present dication, and the coordination geometry at each silver atom can be described as highly distorted tetrahedral (Fig. 10).

An ORTEP drawing of the cation $[Ag(L^2)_2]^+$ in $11 \cdot CH_2Cl_2$ is shown in Fig. 11. A crystallographic C_2 axis bisects the molecule

Fig. 11 Perspective drawing (35% thermal ellipsoids) of the cation $[Ag(L^2)_2]^+$ in compound **11**·CH₂Cl₂. Selected bond lengths (Å) and angles (°): Ag(2)–P(2) 2.388(2); P(2)–Ag(2)–P(2A) 164.8(2). Symmetry code: 1 - x, y, 1 - z.

through the silver atom, which is coordinated by two equivalent phosphine ligands with Ag–P = 2.388(2) Å and P–Ag–P = $164.8(2)^{\circ}$. The distance (2.647 Å) between the silver atom and each pyridyl nitrogen atom is much longer than those in known silver pyridine complexes, which means that only a feeble interaction exists between them.

Conclusion

Two functionalised amine ligands, *N*-[(diphenylphosphino)methyl]-2-pyridinamine (L¹) and *N*-cyclohexyl-*N*-[(diphenylphosphino)methyl]-2-pyridinamine (L²), have been reacted with Fe(CO)₅ and palladium(II), copper(I) and silver(I) salts in different molar ratios to generate a series of complexes exhibiting a variety of new ligation modes: P-coordination (**a**), P,N(pyridyl)-chelating (**d**) and P,N(pyridyl)-bridging (**h**) for L¹; P,N(pyridyl)-chelating (**d**) and a novel P,N(amine),-N(pyridyl)-bridging mode (I) for L². Although there are thirteen conceivable coordination modes for this kind of phosphinopyridinamine ligand, those that involve the weakly coordinating and sterically hindered amino N atom seem unlikely to be observed in metal complexes, and argentophilicity appears to play a significant role in inducing the adoption of the tridentate mode l in $[Ag_2(\mu-L^2)_2]^{2^+}$.

Acknowledgements

This work is supported by Hong Kong Research Grants Council Earmarked Grant CUHK 4022/98.

References

- See, for example: (a) J. C. Jeffrey and T. B. Rauchfuss, *Inorg. Chem.*, 1979, **18**, 2658; (b) E. T. Singewald, C. A. Mirkin and C. L. Stern, *Angew. Chem., Int. Ed. Engl.*, 1995, **34**, 1624; (c) E. Valls, J. Suades, B. Donadieu and R. Mathieu, *Chem. Commun.*, 1996, 771; (d) C. S. Slone, C. A. Mirkin, G. P. A. Yap, I. A. Guzei and A. L. Rheingold, J. Am. Chem. Soc., 1997, **119**, 10743; (e) C. W. Rogers and M. O. Wolf, *Chem. Soc.*, 1997, **129**, 2297; (f) I. D. Kostas, J. Organomet. Chem., 2001, **626**, 221; (g) F. Emmenegger, C. W. Schlaepfer, H. Stoeckli-Evans, M. Piccand and H. Piekarski, *Inorg. Chem.*, 2001, **40**, 3884.
- 2 See, for example: (a) G. R. Newcome, Chem. Rev., 1993, 93, 2067;
 (b) H. Cheng and Z.-Z. Zhang, Coord. Chem. Rev., 1996, 147, 1; (c)
 P. Espinet and K. Soulantica, Coord. Chem. Rev., 1999, 195, 499;
 (d) S.-M. Kuang, Z.-Z. Zhang, Q.-G. Wang and T. C. W. Mak, Inorg. Chem., 1998, 37, 6090; (e) H.-B. Song, Z.-Z. Zhang and T. C. W. Mak, Inorg. Chem., 2001, 40, 5928.
- See, for example: (a) J. P. Farr, M. M. Olmatead and A. L. Balch, J. Am. Chem. Soc., 1980, 102, 6654; (b) P. Braunstein, D. G. Kelly, A. Tiripicchio and F. Ugozzoli, Bull. Soc. Chim. Fr., 1995, 132, 1083; (c) S.-M. Kuang, H. Cheng, L.-J. Sun, Z.-Z. Zhang, Z.-Y. Zhou, B.-M. Wu and T. C. W. Mak, Polyhedron, 1996, 15, 3417; (d) S.-L. Li, T. C. W. Mak and Z.-Z. Zhang, J. Chem. Soc., Dalton Trans, 1996, 3475; (e) Z.-Z. Zhang, H. Cheng, S.-M. Kuang, Y.-Q. Zhou, Z.-X. Liu, J.-K. Zhang and H.-G. Wang, J. Organomet. Chem., 1996, 516, 1; (f) S.-M. Kuang, F. Xue, C.-Y. Duan, T. C. W. Mak and Z.-Z. Zhang, B.-M. Wu, T. C. W. Mak and Z.-Z. Zhang, J. Organomet. Chem., 1997, 540, 55; (h) S.-M. Kuang, F. Xue, T. C. W. Mak and Z.-Z. Zhang, Inorg. Chim. Acta, 1999, 284, 119; (i) V. J. Catalano, B. L. Bennett, S. Muratidis and B. C. Noll, J. Am. Chem. Soc., 2001, 123, 173.
- 4 (a) S. J. Berners-Price, R. J. Bowen, P. Galettis, P. C. Healy and M. J. Mckeage, *Coord. Chem. Rev.*, 1999, 186, 823; (b) C. Hahn, A. Vitagliano, F. Giordano and R. Taube, *Organometallics*, 1998, 17, 2060; (c) P. Wehaman, R. E. Rulke, V. E. Kaasjager, P. C. J. Kamer, H. Kooijman, A. L. Spek, C. J. Elsevier, K. Vrieze and P. W. N. M. Vanleeuwen, J. Chem. Soc., Chem. Commun., 1995, 331; (d) M. Driess, F. Franke and K. Merz, Eur. J. Inorg. Chem., 2001, 2661; (e) M. J. Green, K. J. Cavell and P. G. Edwards, J. Chem. Soc., Dalton Trans., 2000, 853; (f) E. Drent, P. Arnoldy and P. H. M. Budzelaar,

- J. Organomet. Chem., 1993, 444, 247; (g) E. Drent, P. Arnoldy and P. H. M. Budzelaar, J. Organomet. Chem., 1994, 475, 57; (h) P. C. J. Kamer and P. W. N. M. V. Leeuwen, in Aqueous-Phase Oranometallic Catalysis: Concepts and Applications; ed. B. Cornils and W. A. Herrmann, Wiley-VCH, Weinheim, 1998, pp. 564–576; (i) C. G. Arena, F. Faraone, M. Lanfranchi, E. Rotondo and A. Tirpicchio, Inorg. Chem., 1992, 31, 4797; (j) A. S. C. Chan, C.-C. Chen, R. Cao, M.-R. Lee, S.-M. Peng and G. H. Lee, Organometallics, 1997, 16, 3469.
- 5 (a) S. E. Durran, M. B. Smith, A. M. Z. Slawin and J. W. Steed, J. Chem. Soc., Dalton Trans., 2000, 2778; (b) D.-J. Cui, Q.-S. Li, F.-B. Xu, X.-B. Leng and Z.-Z. Zhang, Organometallics, 2001, 20, 4126.
- 6 J. J. Brunet, R. Chauvin, O. Diallo, F. Kindela, P. Leglaye and D. Neibecker, *Coord. Chem. Rev.*, 1998, **180**, 331 and reference therein.
- 7 SMART 5.0 and SAINT 4.0 for Windows NT, Area Detector Control and Integration Software, Bruker Analytical X-Ray Systems, Inc., Madison, WI, USA, 1998.
- 8 G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data, Univ. of Göttingen, Germany, 1996.
- 9 G. M. Sheldrick, SHELXTL 5.10 for Windows NT, Structure Determination Software, Bruker Analytical X-Ray Systems, Inc., Madison, WI, USA, 1997.
- 10 (a) S. J. Coles, S. E. Durran, M. B. Hursthouse, A. M. Z. Slawin and M. B. Smith, *New J. Chem.*, 2001, **25**, 416; (b) H.-B. Song, Q.-M. Wang, Z.-Z. Zhang and T. C. W. Mak, *J. Organomet. Chem.*, 2000, **605**, 15.
- 11 S.-L. Li, Z.-Z. Zhang and T. C. W. Mak, J. Organomet. Chem., 1997, 537, 73.
- 12 S. L. Schiavo, G. De Munno, F. Nicola and G. Tresoldi, J. Chem. Soc., Dalton Trans., 1994, 3125.
- 13 (a) M.-L. Tong, X.-M. Chen, B.-H. Ye and L.-N. Ji, Angew. Chem., Int. Ed., 1999, 38, 2237; (b) C.-M. Che, M.-C. Tse, M. C. W. Chan, K.-K. Cheung, D. L. Phillips and K. H. Leung, J. Am. Chem. Soc., 2000, 122, 2464; (c) M. A. Rawashdeh-Omary, M. A. Omary and H. H. Patterson, J. Am. Chem. Soc., 2000, 122, 10371; (d) Q.-M. Wang and T. C. W. Mak, Chem. Commun., 2001, 807 and references therein; (e) D. Rais, J. Yau, D. M. P. Mingos, R. Vilar, A. J. P. White and D. J. Williams, Angew. Chem., Int. Ed., 2001, 40, 3464; (f) P. Pyykkö, Chem. Rev., 1997, 97, 587.