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AS A STEREOCONTROLLING AUXILIARYl) 
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Abstract: A first total synthesis of a SSEAJ, Gal~1+3GalNAc~l-+3Galal+4Galpl-t4Glc~l+ 3Cer, was 
achieved in an efficient way by using a key glycopentaosyl glycosyl donor that carried a 
stereocontrolling auxiliary at O-2a. 

Globopentaosyl ceramide 1 has been isolated from green monkey kidney2), human 

teratocarcinoma3) as well as from human kidney4), and was chemically3) characterized. 1 

showed a strongest reactivity3) to a monoclonal antibody directed to 4- to g-cell stage of murine 

embryos and has been knowns) as the stage-specific embryonic antigen 3 (SSEA-3). Cell surface 

glycolipids such as 1 are claimed to play significant roles as differentiation antigens6) during the 

course of embryogenesis. We describe here a first total synthesis of 1. 

Retrosynthetic analysis of 1 led us to design a glycopentaosyl donor 2 with a 

stereocontrolling auxiliary7) at O-2a and a ceramide derivative 38). Compound 2 may be 

constructed by elongation of glycan chains using two glycosyl donors 4 and 5, and a glycosyl 

acceptor 6. Synthons 4 and 5 may be designed as 7 and 8, respectively, in order to give with high 

stereoselectivity either 1,2-trans or 1,2-cis glycosides. Properly protected lactose derivative 9, a 

synthetic equivalent of 6, was designed so that 2,4,6-trimethylbenzoyl group at O-2a of 9 should be 

functional later at the crucial coupling step between 2 and 3. It is to be noted that benzoyl9) 

group has already been claimed to have definite advantage over acetyl group as an O-2 

stereocontrolling auxiliary for 1,2-trans glycosylation. 

A practical route for the synthesis of a glycosyl acceptor 9 is developed as follows. The 
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readily availablelO) isopropylidene derivative 10 of lactose was converted into bromide 1511) in 5 

steps via II-14 (1 Ac20 in Py, 2 80% AcOH, 3 PhCH(OMe)2-TsOH in CH3CN, 4 NH2NH2*AcOH in 

DMF12), 5 CBr4-(Me2N)3P13) in THF, 46% overall). Conversion of 15 into 9 was achieved via 

orthoester 17 in 7 steps (1 BnOH-n-BuqNBr-Et3N in CH2CI2, 2 NaOMe in MeOH, 3 NaH-BnBr in DMF, 

4 TMSOTf-MS4A in (CH2Cl)214), 5 NaOMe in MeOH, 6 TMB chloride-DMAP in Py. 7 BH3*NMes-AlCl3 

in THF15), 47% overall). Having the key glycosyl acceptor 9 prepared, AgOTf-MS4A promoted 

glycosylation of 9 with a galactosyl donor 87) smoothly afforded the expected product 21 (78%). 

In order to examine the efficiency of TMB auxiliary at O-2a, conversion of 21 into two 

glycotriaosyl donors 25 (68% overall) and 26 (81% overall) was performed via 23 and 24 in 4 

steps, respectively (1 Pd-C, H2 in 7:3 MeOH-H20, 2 Ac20-DMAP in Py. 3 NH2NH2mAcOH in DMF, 4 

ClgCN-DBU in (~1~2~1)216), or DAST in (CH2Cl)2 17). Glycosylation of a ceramide derivative 3 with 

either 25 or 26 was examined in the presence of TMSOTf-MS4A in (CH2Cl)2 or SnC1218)-AgOTf- 

MS4A in (CH2Cl)2 to give 27 (27 or 40%. respectively), which was smoothly deblocked via 28 to 29 

(1 n-BqNF in THF, 2 O.lM NaOMe-MeOH-THF, 20”, 3 0.5M NaOH in MeOH-THF, 50”, 85% overall). 

These results clearly proved that as a stereocontrolling auxiliary at O-2a for 1,2-trans 

glycosylation TMB was as functional as pivaloyl which was previously developed7). Therefore, 

further experiments directed toward a total synthesis of 1 was pursued as follows. 

Compound 21 was deacetylated to a glycosyl acceptor 22 which was glycosylated by a 

readily obtainable 71g) to give 30 (BF3*OEt2-MSAW300 in (CH2Cl)2, 22% based on 7). A major by- 

product derived from 7 was identified as 35 (44%). Conversion of 30 into a glycopentaosyl imidate 

34 was performed in a conventional way via 31-33 in 6 steps (1 NH2NH2*H20 in EtOH, 2 Ac20 in 

Py, 3 10% Pd-C and H2 in 7:3 MeOH-H20.4 AqO-DMAP in Py, 5 NH2NHpAcOH in DMF, 6 Cl3CCN-DBU 

in (CH:!Cl)2, 60% overall). A crucial coupling between 3 and 34 was achieved to afford 36(TMSOTf- 

MSAW300 in (CH2Cl)2, 33%). which was deblocked to give the target 1 (1 n-Bu4NF in THF, 2 NaOMe 

in MeOH, 3 NaOH in H20-MeOH, 55% overall). 1H Nmr data of synthetic 1 was in complete 
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gp$f 



5683 

OR’ OR’ 

Scheme 3 

agreement with those reported for natural sample3). 

In conclusion, a first total synthesis of a SSEA-3, globopentaosyl ceramide 1. was 

successfully achieved by employing TMB as a stereocontrolling auxiliary at O-2a in the key 

glycosyl donor 34. 
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