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Abstract: Methods for synthetic modifications of the natural diben-
zylbutyrolactone lignan hydroxymatairesinol into chiral 1,4-diols
with different lignan-derived backbones have been developed. A
stepwise procedure, involving alkylation and oxidation, was shown
to be successful and several highly substituted 1,4-diols were pre-
pared. Some substituted butyrolactones resisted alkylation and led
to the formation unusually stable hemiketals (butyrolactols). The
formation of stable hemiketals was investigated in detail, showing
that different backbone structures influence the formation and reac-
tivity of the hemiketals.
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Utilizing wood-derived compounds as high-value chemi-
cals has become increasingly important due to the devel-
opment of biorefinery processes. Norway spruce (Picea
abies) is highly abundant and one of the most economical-
ly important coniferous species in Europe. The knotwood
of Norway spruce has been shown to be rich in polyphe-
nolic compounds with up to 20% of its dry weight consist-
ing of the lignan hydroxymatairesinol.1 The synthetic
modification of hydroxymatairesinol to high-value com-
pounds has been of interest to us for several years.

We have recently investigated the possibility of trans-
forming hydroxymatairesinol into sterically hindered li-
gands (similar to TADDOL). Several chiral 1,4-diol
structures based on the aryltetralin skeleton of dimethyl-
conidendrin (1, Scheme 1) have been synthesized and
their potential application as ligands in asymmetric catal-
ysis investigated.2 When converting an intermediate sub-
stituted butyrolactone 3, by addition of Grignard or alkyl
lithium reagents, stable hemiketals 4 were predominantly
formed. Only the methyl-substituted lactone formed the
diol 5 (Scheme 1). It was shown that one reason for this
problem was the steric bulk of the lignan backbone, but
even in case of the less bulky methyl groups the main
product was still the hemiketal. Surprisingly, the forma-
tion of hemiketals for TADDOL-like structures has only
rarely been reported in the literature. However, recent pa-
pers on TADDOL derivatives have addressed similar
problems.3,4

To overcome this problem and to study the stability of the
hemiketals, we decided to investigate the reactivity of oth-
er lignan-derived backbones, with the hypothesis that
more flexible and accessible backbones would react to
give the target 1,4-diols. For this purpose, three new lig-
nan backbones were selected: dimethylmatairesinol (6a),
a fully flexible structure, the macrocycle 6c with a slightly
more fixed conformation, and a cyclooctadiene structure
6b with a more rigid structure (Scheme 2).

The use of hydroxymatairesinol as a starting material gave
access to the enantiopure butyrolactone with the 8R,8R′
configuration, the configuration of these stereocentres be-
ing preserved during the synthetic modifications.

Hydroxymatairesinol was first converted into matairesin-
ol by catalytic hydrogenolysis on Pd/C (Scheme 2).5

Compound 6a was then prepared in almost quantitative
yield from matairesinol by methylation with methyl io-
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dide. Compound 6b was prepared from 6a by intramolec-
ular oxidative coupling mediated by vanadium
oxyfluoride in good yield.6 For preparation of the macro-
cyclic compound 6c, the phenolic groups of matairesinol
were first allylated to give 10 and then cyclized by ring-
closing metathesis to give 11, followed by hydrogenation
of the double bond (for details see Supporting Informa-
tion).

The lactones 6a–c were then methylated with methylmag-
nesium bromide to afford compounds 7a–c in excellent
yields. The diols 7a–c were further oxidized with pyridin-
ium chlorochromate (PCC) in good to excellent yields to
the lactones 8a–c (Scheme 3).

When the substituted lactones 8a and 8c were reacted with
methylmagnesium bromide, a mixture of hemiketals (dia-
stereomers) was first formed, but with excess of methyl-
magnesium bromide the diols 9a and 9c were slowly
obtained (Scheme 4). In case of the lactone 8b, the mix-
ture of hemiketals (S)- and (R)-9b was stable and did not
undergo any further reactions regardless of the reaction
conditions. Experimental details for methylation of the
lactones 8a–c as well as some analytical data for com-
pounds 9a–c are presented in the references.7 For more

detailed experimental information see Supporting Infor-
mation.

These results are in good agreement with the observations
by Budragchaa et al.3 In a similar synthesis of TADDOL-
like structures, stable substituted hemiketals were formed
and the introduction of the fourth substituent took up to 48
hours. In the case of lactones 8a and 8c, formation of a
close to 50:50 mixture of the hemiketal (one diastereo-
mer) and the tetramethyl diol was observed in one hour,
and by addition of more methylmagnesium bromide very
slow conversion of the hemiketal into tetramethyl diol
(several days) was observed. A more detailed study of the
reaction mixture (by NMR) indicated that predominatly
one of the hemiketals reacted with a moderate rate, where-
as the other reacted slowly.

Scheme 1  Transformation of dimethylconidendrin (1) into chiral
diols2
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These observations, as well as the fact that compound 3
led to the formation of the unreactive butyrolactol 4 upon
alkylation, clearly showed that in a flexible backbone both
diastereomers of the hemiketals react further to furnish the
diols, but with considerable difference in reaction rate. In
a more rigid structure with a certain configuration and
conformation of the butyrolactol ring [compounds (S)-9b,
(R)-9b, and 4], further reaction to the diol was prevented.
For these stable hemiketals no equilibrium between the
ketone and the hemiketal was observed. Whatever the
configuration at the hemiketal carbon, the torsion angle
between OH and the oxygen in the butyrolactol ring were
of equal magnitude in (S)- and (R)-9b and similar to that

of compound 4. The bond angles and the flexibility in the
butyrolactol ring clearly determined the reactivity of this
intermediate.

The tetramethyl diol 9c was crystallized from benzene to
give single crystals suitable for X-ray diffraction. The re-
sulting molecular structure is shown in Figure 1. A strong
intramolecular hydrogen bond between the hydroxyl
groups [O···O′ distance 2.674(2) Å] induces a nonsym-
metrical structure in the solid state, and the parallel align-
ment of the aromatic rings is distorted by about 15°.
Furthermore, intermolecular hydrogen bonds link the di-
ols together forming molecular chains (Figure S1 in Sup-
porting Information). However, the NMR spectrum
shows the molecule to be completely symmetrical, which
indicates that the hydrogen bonding does not distort the
structure in solution.

Figure 1  X-ray structure of diol 9c. Thermal ellipsoids have been
drawn at 30% probability level and CH hydrogens are omitted for
clarity.

In conclusion, we have developed methods for diverse
synthetic modifications of the lignan skeleton of hydroxy-
matairesinol. The preparation of highly substituted 1,4-di-
ols was not straightforward due to formation of stable
hemiketals. This problem has recently been recognized
and has now been investigated in more detail by modifi-
cation of the backbone structure. According to our results,
the formation and further reactivity of highly substituted
butyrolactol (hemiketal) structures is only partially de-
pendent on the flexibility and bulkiness of the molecule.

Scheme 3  Alkylation and oxidation of the different lactones 6a–c.
Reagents and conditions: (i) MeMgBr (3 equiv), THF, r.t.; (ii) PCC
(3 equiv), CH2Cl2, r.t.
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Scheme 4  Reaction of the dimethyl lactones 8a–c with methylmagnesium bromide. Reagents and conditions: MeMgBr (3–5 equiv), THF, r.t.

O

H

H
O

9a

9c

(S)-9b

8a–c

MeMgBr

MeMgBr

MeMgBr

(R)-9b

60%

66%

81%

84:16
O

MeO

O

MeO
H

H

MeO

MeO

MeO

MeO

H

H

O

OH
OH

MeO

MeO

MeO

MeO

H

H

O

OH OH

MeO

MeO

MeO

MeO

H

H

OH
OH

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

 



2426 Y. Brusentsev et al. LETTER

Synlett 2013, 24, 2423–2426 © Georg Thieme Verlag  Stuttgart · New York

A more important feature is the configuration and confor-
mation of the butyrolactol. The prepared sterically hin-
dered chiral diols could potentially be used as ligands in
transition-metal-mediated asymmetric catalysis.8,9 Fur-
ther transformation of 1,4-diols into chiral phosphine li-
gands is ongoing in our laboratory.
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