A Modified Friedlander Condensation for the Synthesis of 3-Hvdroxvguinoline-2-carboxvlates

Dale L. Boger* and J.-H. Chen

Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037

Received July 10, 1995

In conjunction with efforts on the total synthesis of sandramycin,¹ quinaldopeptin,² BE22179,³ and the luzopeptins,⁴ symmetrical cyclic decadepsipeptides possessing a 2-fold axis of symmetry which exhibit highaffinity sequence-selective DNA binding with bisintercalation of the pendant heterocyclic chromophores.^{5,6} we required access to suitably protected derivatives of the 3-hydroxyquinoline-2-carboxylic acids 1a and 1b and related agents⁶ (Chart 1).

To the best of our knowledge, only one indirect synthesis of 1a has been disclosed⁷ and is of limited practical value and our initial efforts on their preparation proved less straightforward than their structures would suggest. Unlike our successful condensation of pyruvic acid with a substituted 2-aminobenzaldehyde incorporated into a total synthesis of streptonigrone,⁸ attempts to directly condense 3-hydroxy- or 3-(benzyloxy)pyruvic acid or their methyl esters with 2-aminobenzaldehyde (2a) provided intractable mixtures with little or no evidence of the generation of the desired quinoline (Scheme 1). Similarly, the condensation of ethyl 2,4-dioxopentanoate with 2a cleanly provided the expected quinoline 3,9 but initial efforts to subsequently convert the C3 acetyl group to a phenol were not productive. Conventional Baeyer-Villiger oxidation with m-CPBA provided the corresponding N-oxide preferentially, and efforts to employ strongly acidic conditions in efforts to protonate and protect the quinoline nitrogen were not successful in altering the course of the reaction.¹⁰ Similarly, reduction of **3** to provide 4 followed by acid-catalyzed benzylic hydroperoxide formation and rearrangement also failed to provide the corresponding O-acetate or phenol.¹¹

An effective solution to the direct preparation of selectively protected derivatives of 1 was found through use of a modified Friedlander condensation¹² employing

Suda, H. J. Antibiot. 1994, 47, 129.
(4) Ohkuma, H.; Sakai, F.; Nishiyama, Y.; Ohbayashi, M.; Imanishi, H.; Konishi, M.; Miyaki, T.; Koshiyama, H.; Kawaguchi, H. J. Antibiot. 1980, 33, 1087. Tomita, K.; Hoshino, Y.; Sasahira, T.; Kawaguchi, H. J. Antibiot. 1980, 33, 1098. Konishi, M.; Ohkuma, H.; Sakai, F. : Tsuno. T.; Koshiyama, H.; Naito, T.; Kawaguchi, H. J. Antibiot. 1981, 34, 148, Konishi, M.; Ohkuma, H.; Sakai, F.; Tsuno, T.; Koshiyama, H.; Naito, T.; Kawaguchi, H. J. Am. Chem. Soc. 1981, 103, 1241. Arnold, E.; Clardy, J. J. Am. Chem. Soc. 1981, 103, 1243.

(5) Huang, C.-H.; Mong, S.; Crooke, S. T. Biochemistry 1980, 19, 5537

1993, 115, 10733.

the readily accessible O-methyloxime 6 (Scheme 2). Although such oximes have not been previously employed in a Friedlander condensation, we have found that the enolate derived from oxime 6, which was prepared in one step from the O-methyloxime of ethyl 3-bromopyruvate¹³ by treatment with the lithium alkoxide salt of benzyl alcohol, is sufficiently reactive to condense selectively with 2-aminobenzaldehydes without undergoing preferential self-condensation. Thus, treatment of a solution of 2a-d and 6 in EtOH with KOH (4 equiv) at reflux provided good conversion to the quinoline Friedlander condensation products produced as the carboxylic acids which were converted to the corresponding methyl esters 7 (5 equiv of CH₃I, 0.2 equiv of catalytic Bu₄NI, CH₂Cl₂saturated aqueous NaHCO₃, 25 °C, 24 h) prior to isolation and characterization.

Benzyl ether deprotection (H₂, catalytic 10% Pd-C, CH₃OH, 25 °C, 96% for 7a) of the methyl esters 7a-dprovides the corresponding methyl 3-hydroxyquinoline-2-carboxylates. The 3-(benzyloxy)quinoline-2-carboxylic acids 8a-d derived from LiOH hydrolysis of 7a-d should prove useful in the synthesis of sandramycin, the luzopeptins and related analogs, and the reagent 6 or related oximes effective for the preparation of other related 3-hydroxyquinoline-2-carboxylates.

Experimental Section

Ethyl 3-(Benzyloxy)-2-(methoxyimino)propanoate (6). A solution of benzyl alcohol (1.30 g, 12 mmol) in 40 mL of THF was cooled to 0 °C and treated with n-BuLi (6.3 mL, 12 mmol, 1.9 M in hexane). The resulting solution was stirred at 0 °C for 30 min and transferred to a flask containing ethyl 3-bromo-2-(methoxyimino)propanoate $(5,^{13} 2.24 \text{ g}, 10 \text{ mmol})$ in 40 mL of THF at 0 °C through a cannula. The reaction mixture was allowed to warm to 25 °C and stirred for an additional 20 h. The mixture was poured onto 30 mL of H₂O and extracted with EtOAc $(3 \times 50 \text{ mL})$. The combined organic phases were dried (Na₂SO₄), filtered, and concentrated in vacuo. Flash chromatography (SiO₂, EtOAc-hexane 1:15) provided 6 (1.95 g, 78%) as a colorless liquid: R_f 0.5 (SiO₂, 20% EtOAc-hexane); ¹H NMR (CDCl₃, 200 MHz) δ 7.40-7.30 (m, 5H), 4.55 (s, 2H), 4.42 (s, 2H), 4.34 (q, 2H, J = 7.0 Hz), 4.08 (s, 3H), 1.35 (t, 3H, J = 7.0 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ 163.3, 149.7, 138.1, 128.8, 128.7, 128.2, 73.5, 63.7, 62.0, 60.2, 14.1; IR (neat) ν_{max} 2982, 1722, 1604, 1498, 1374, 1240, 1150, 1094, 928, 858 740 cm⁻¹; CIHRMS (isobutane) m/z 252.1234 (C₁₃H₁₇NO₄ requires 252.1236).

General Procedure for the Synthesis of Substituted Methyl 3-(Benzyloxy)quinoline-2-carboxylates. A solution of the substituted 2-aminobenzaldehyde (2, 2 equiv) and 6 (1 equiv) in absolute EtOH (10 mL/1 mmol of 2) was treated with solid KOH (pellets, 4 equiv), and the resulting mixture was warmed at reflux for 48 h. The reaction mixture was cooled, poured onto H_2O , and acidified to pH = 1 with the addition of aqueous 3 M HCl. The aqueous solution was extracted with EtOAc, and the organic layers were dried (Na_2SO_4) , filtered, and concentrated in vacuo. The residue containing the 3-(benzyloxy)quinoline-2-carboxylic acids proved difficult to purify. Consequently, the crude acid was converted to its corresponding methyl ester. The crude 3-(benzyloxy)quinoline-2-carboxylic acid was dissolved in CH2Cl2 (40 mL/10 mmol) and treated sequentially with saturated aqueous NaHCO₃ (20 mL/10 mmol), n-Bu₄-NI (1 equiv based on 6), and CH₃I (5 equiv based on 6), and the reaction mixture was stirred at 25 °C for 24 h. The organic layer was separated and the aqueous layer was extracted with CH2- Cl_2 . The combined organic layers were dried (Na₂SO₄), filtered,

⁽¹⁾ Matson, J. A.; Bush, J. A. J. Antibiot. **1989**, 42, 1763. Matson, J. A.; Colson, K. L.; Belofsky, G. N.; Bleiberg, B. B. J. Antibiot. **1993**,

⁽²⁾ Toda, S.; Sugawara, K.; Nishiyama, Y.; Ohbayashi, M.; Ohkusa,
N.; Yamamoto, H.; Konishi, M.; Oki, T. J. Antibiot. 1990, 43, 796.
(3) Okada, H.; Suzuki, H.; Yoshinari, T.; Arakawa, H.; Okura, A.;

⁽⁶⁾ Boger, D. L.; Chen, J.-H. J. Am. Chem. Soc. 1993, 115, 11624.
(7) Kaneko, C.; Yamada, S. Chem. Pharm. Bull. 1967, 15, 663.
(8) Boger, D. L.; Cassidy, K. C.; Nakahara, S. J. Am. Chem. Soc.

⁽⁹⁾ Woodward, R. B.; Kornfeld, E. C. J. Am. Chem. Soc. 1948, 70, 2508

⁽¹⁰⁾ Boger, D. L.; Coleman, R. S. Tetrahedron Lett. 1987, 28, 1027.

 ⁽¹¹⁾ Boger, D. L.; Yohannes, D. J. Org. Chem. 1987, 52, 5283. Boger,
 D. L.; Coleman, R. S. J. Org. Chem. 1986, 51, 5436.
 (12) Cheng, C.-C.; Yan, S.-J. Org. React. 1982, 28, 37.

⁽¹³⁾ Treatment of commercially available ethyl 3-bromopyruvate with O-methylhydroxyamine hydrochloride (1.5 equiv, EtOH, 25 °C, 24 h, 85%) provided 5: Bicknell, A. J.; Burton, G.; Elder, J. S. Tetrahedron Lett. 1988, 29, 3361.

and concentrated *in vacuo*, and the residue was purified by flash chromatography.

R = Ac, H

Methyl 3-(Benzyloxy)quinoline-2-carboxylate (7a). The crude residue was purified by flash chromatography (SiO₂, 5 × 16 cm, 10% EtOAc-hexane) to afford **7a** (3.01 g, 67%) as a colorless oil: R_f 0.29 (20% EtOAc-hexane); ¹H NMR (CDCl₃, 400 MHz) δ 8.10 (d, 1H, J = 8.3 Hz), 7.68 (d, 1H, J = 7.6 Hz), 7.56 (s, 1H), 7.60-7.45 (m, 4H), 7.39 (t, 2H, J = 7.6 Hz), 7.32 (m, 1H), 5.26 (s, 2H), 4.03 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.6, 150.1, 144.0, 142.2, 135.7, 129.7, 129.6, 128.7, 128.4, 128.1, 127.6, 126.9, 126.4, 115.9, 70.6, 52.9; IR (neat) ν_{max} 3062, 2950, 1738, 1600, 1296, 1214, 1087 cm⁻¹; FABHRMS (NBA-CsI) m/z 426.0089 (M + Cs⁺, C₁₈H₁₆NO₃ requires 426.0166).

Methyl 3-(Benzyloxy)-6-methoxyquinoline-2-carboxylate (7b). The crude residue was purified by flash chromatography (SiO₂, 4×16 cm, 10-20% EtOAc-hexane gradient) to afford 7b (673 mg, 1.29 g theoretical, 52%) as a white solid which was further recrystallized from EtOAc-hexane: mp 131-133 °C (white plates); R_f 0.17 (20% EtOAc-hexane); ¹H NMR (CDCl₃, 400 MHz) δ 7.99 (d, 1H, J = 9.2 Hz), 7.49 (d, 2H, J = 7.2 Hz), 7.46 (s, 1H), 7.41-7.37 (m, 2H), 7.34-7.29 (m, 1H), 7.22 (dd, 1H, J = 9.2, 2.7 Hz), 6.93 (d, 1H, J = 2.7 Hz), 5.25 (s, 2H), 4.02 (s, 3H), 3.89 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.6, 159.4, 151.1, 140.6, 138.2, 135.9, 131.4, 131.2, 128.7, 128.0, 126.8, 120.6, 115.2, 104.0, 70.5, 55.5, 52.8; IR (neat) ν_{max} 3005, 2967, 1734, 1618, 1600, 1496, 1439, 1373, 1302, 1203, 1093, 1026, 1008, 838, 757 cm⁻¹; FABHRMS (NBA-NaI) m/z 346.1068 (M + Na⁺, C₁₉H₁₇NO₄ requires 346.1055).

Anal. Calcd for $C_{19}H_{17}NO_4$: C, 70.57; H, 5.30; N, 4.33. Found: C, 70.67; H, 5.43; N, 4.53.

Methyl 3-(Benzyloxy)-6-methylquinoline-2-carboxylate (7c). The crude residue was purified by flash chromatography (SiO₂, 4 × 16 cm, 10% EtOAc-hexane) to afford 7c (899 mg, 67%) as a white solid which was further recrystallized from EtOAc-hexane: mp 133-135 °C (white plates); R_f 0.26 (20% EtOAc-hexane); ¹H NMR (CDCl₃, 400 MHz) δ 8.00 (d, 1H, J = 8.6 Hz), 7.49 (s, 1H), 7.47 (s, 1H), 7.46 (d, 2H, J = 8.7 Hz), 7.42-7.37 (m, 3H), 7.34-7.29 (m, 1H), 5.28 (s, 2H), 4.03 (s, 3H), 2.50 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.7, 150.4, 142.8, 140.8, 138.7, 135.9, 130.0, 129.9, 129.4, 128.7, 128.1, 126.9, 125.3, 115.5, 70.5, 52.9, 21.7; IR (KBr) ν_{max} 3024, 2947, 1740, 1605, 1500, 1418, 1376, 1287, 1203, 1098, 1023, 827, 752 cm⁻¹; FABHRMS (NBA-NaI) m/z 308.1296 (M + H⁺, C₁₉H₁₇NO₃ requires 308.1287).

Anal. Calcd for $C_{19}H_{17}NO_3$: C, 74.25; H, 5.58; N, 4.56. Found: C, 74.27; H, 5.25; N, 4.67.

Methyl 3-(Benzyloxy)-7-chloroquinoline-2-carboxylate (7d). The crude residue was purified by flash chromatography (SiO₂, 4 × 16 cm, 10% EtOAc-hexane) to afford 7d (671 mg, 70%) as a white solid which was further recrystallized from EtOAc-hexane: mp 118-119 °C (white needles); R_f 0.38 (20% EtOAc-hexane); ¹H NMR (CDCl₃, 400 MHz) δ 8.10 (d, 1H, J =2.1 Hz), 7.64 (d, 1H, J = 8.7 Hz), 7.54 (s, 1H), 7.49 (dd, 1H, J =8.7, 2.1 Hz), 7.47 (d, 2H, J = 7.5 Hz), 7.42-7.38 (m, 2H), 7.36-7.31 (m, 1H), 5.27 (s, 2H), 4.03 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.4, 150.2, 145.1, 142.4, 135.5, 133.3, 129.4, 128.7, 128.6, 128.2, 128.0, 127.6, 126.9, 115.8, 70.7, 53.0; IR (KBr) ν_{max} 3026, 2933, 1720, 1595, 1437, 1356, 1280, 1204, 1140, 1095, 934, 870, 741 cm⁻¹; FABHRMS (NBA-NaI) m/z 350.0572 (M + Na⁺, C₁₈H₁₄ClNO₃ requires 350.0560).

Anal. Calcd for $C_{18}H_{14}ClNO_3$: C, 65.96; H, 4.31; N, 4.27. Found: C, 66.07; H, 3.91; N, 4.43.

General Procedure for the Preparation of Substituted 3-(Benzyloxy)quinoline-2-carboxylic Acids. Lithium hydroxide monohydrate (3 equiv) was added to a solution of 7 in THF-CH₃OH-H₂O (3:1:1, 10 mL/1 mmol of 7) at 25 °C, and the reaction mixture was stirred at 25 °C for 3 h. The reaction mixture was extracted with EtOAc before the aqueous phase acidified with 10% aqueous HCl to pH = 1 and extracted with EtOAc. The latter organic layer was dried (Na₂SO₄), filtered, and concentrated *in vacuo*.

3-(Benzyloxy)quinoline-2-carboxylic Acid (8a). The crude acid was recrystallized from CH₃OH to give **8a** (630 mg, 1.21 g theoretical, 52%) as white needles: mp 150–151 °C dec; ¹H NMR (CDCl₃, 400 MHz) δ 8.06 (d, 1H, J = 8.0 Hz), 7.76 (d, 1H, J = 7.6 Hz), 7.73 (s, 1H), 7.68–7.50 (m, 4H), 7.41 (t, 2H, J = 7.5

Hz), 7.35–7.30 (m, 1H), 5.39 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 161.7, 152.5, 140.6, 137.5, 135.5, 131.5, 129.7, 129.2, 128.8, 128.5, 128.2, 126.8, 126.5, 118.6, 70.9; IR (KBr) ν_{max} 3431, 2913, 1725, 1603, 1330, 1214, 1145, 1101, 1022, 880, 865, 741 cm⁻¹; FABHRMS (NBA–CsI) m/z 411.9955 (M + Cs⁺, C₁₇H₁₃NO₃ requires 411.9950).

Anal. Calcd for $C_{17}H_{13}NO_3$: C, 74.18; H, 4.69; N, 5.02. Found: C, 73.90; H, 4.92; N, 5.17.

3-(Benzyloxy)-6-methoxyquinoline-2-carboxylic Acid (8b). The crude acid was recrystallized from benzene to provide 8b (210 mg, 280 mg theoretical, 75%) as white needles: mp 145– 146 °C dec; ¹H NMR (CDCl₃, 400 MHz) δ 7.93 (d, 1H, J = 9.2Hz), 7.60 (s, 1H), 7.58 (d, 2H, J = 7.2 Hz), 7.41 (dd, 2H, J = 7.4, 7.2 Hz), 7.35–7.30 (m, 1H), 7.28 (dd, 1H, J = 2.7, 9.2 Hz), 6.97 (d, 1H, J = 2.7 Hz), 5.37 (s, 2H), 3.93 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 161.9, 160.4, 153.1, 136.8, 135.6, 134.5, 133.4, 130.7, 128.8, 128.1, 126.8, 122.0, 117.3, 103.6, 70.8, 55.7; IR (KBr) ν_{max} 3436, 2920, 1773, 1621, 1469, 1364, 1345, 1234, 1077, 1021, 823, 736 cm⁻¹; FABHRMS (NBA) m/z 310.1077 (M + H⁺, C₁₈H₁₅-NO₄ requires 310.1079).

Anal. Calcd for C₁₈H₁₅NO₄: C, 69.89; H, 4.89; N, 4.53. Found: C, 69.76; H, 4.76; N, 4.52.

3-(Benzyloxy)-6-methylquinoline-2-carboxylic Acid (8c). The crude acid was recrystallized from benzene to provide **8c** (138 mg, 197 mg theoretical, 70%) as white needles: mp 146–148 °C dec; ¹H NMR (CDCl₃, 400 MHz) δ 7.94 (d, 1H, J = 8.6 Hz), 7.62 (s, 1H), 7.58 (d, 2H, J = 7.4 Hz), 7.51 (s, 1H), 7.47 (dd, 2H, J = 1.5, 8.6 Hz), 7.40 (dd, 2H, J = 7.7, 7.4 Hz), 7.34–7.30 (m, 1H), 5.37 (s, 2H), 2.54 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 162.0, 152.5, 140.2, 139.2, 136.5, 135.6, 131.6, 130.9, 128.8, 128.7, 128.1, 126.8, 125.4, 117.8, 70.8, 21.9; IR (KBr) ν_{max} 3426, 3065, 1759, 1621, 1592, 1500, 1456, 1345, 1272, 1199, 1076, 1024, 896, 822, 730, 696 cm⁻¹; FABHRMS (NBA) m/z 294.1139 (M + H⁺, C₁₈H₁₅NO₃ requires 294.1130).

Anal. Calcd for $C_{18}H_{15}NO_3$: C, 73.70; H, 5.15; N, 4.78. Found: C, 73.27; H, 5.02; N, 4.73.

3-(Benzyloxy)-7-chloroquinoline-2-carboxylic Acid (8d). The crude acid was recrystallized from benzene to provide **8d** (241 mg, 297 mg theoretical, 81%) as white needles: mp 146– 148 °C dec; ¹H NMR (CDCl₃, 400 MHz) δ 9.72 (broad s, 1H), 8.04 (s, 1H), 7.70 (s, 1H), 7.69 (d, 1H, J = 8.3 Hz), 7.60–7.50 (m, 3H), 7.41–7.35 (m, 2H), 7.33–7.29 (m, 1H), 5.35 (s, 2H); ^{13}C NMR (CDCl₃, 400 MHz) δ 161.8, 152.4, 140.7, 138.7, 135.2, 134.2, 130.6, 129.7, 128.8, 128.2, 127.9, 127.2, 126.8, 118.4, 70.9; IR (KBr) $\nu_{\rm max}$ 3426, 3067, 2872, 1724, 1595, 1428, 1353, 1268, 1197, 1144, 1095, 938, 736 cm⁻¹; FABHRMS (NBA–NaI) m/z 314.0570 (M + H⁺, C₁₇H₁₂ClNO₃ requires 314.0580).

General Procedure for Benzyl Ether Deprotection: Methyl 3-Hydroxyquinoline-2-carboxylate. A solution of 7a (270 mg, 0.92 mmol) in 9 mL of CH₃OH was treated with 10% Pd-C (27 mg), and the resulting black suspension was stirred at 25 °C under H₂ (1 atm) for 5 h. The catalyst was removed by filtration through Celite, and the filtrate was concentrated *in* vacuo. Flash chromatography (SiO₂, 2 × 18 cm, 10% Et₂Ohexane eluent) afforded the methyl ester of 1a (180 mg, 187 mg theoretical, 96%) as a white solid: mp 122-124 °C; R_f O.3 (SiO₂, 20% EtOAc-hexane); ¹H NMR (CDCl₃, 400 MHz) δ 10.41 (s, 1H), 8.13 (d, 1H, J = 8.6 Hz), 7.71 (d, 1H, J = 8.9 Hz), 7.70 (s, 1H), 7.56 (m, 2H), 4.13 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 169.6, 153.8, 142.6, 133.4, 132.1, 130.4, 129.5, 127.7, 126.3, 120.8, 53.6; IR (KBr) ν_{max} 3187, 2946, 1701, 1685 cm⁻¹; FABHRMS (NBA-CsI) m/z 335.9637 (M + Cs⁺, C₁₁H₉NO₃ requires 335.9637).

Acknowledgment. We gratefully acknowledge the financial support of the National Institutes of Health (CA 41101).

Supporting Information Available: ¹H NMR spectra of **6**, **7a**, **8d**, and the methyl ester of **1a** (4 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO951238M