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Libraries of 1-methyl-2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-ones/oximes/O-methyloximes 1–14/15–28/
29–42 and 7-methyl-2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-ones/oximes/O-methyloximes 43–48/49–
54/55–60 were synthesized and their stereochemistry was established by 1D/2D NMR spectral and single
crystal XRD studies. All the synthesized oximes and oxime ethers were screened for their in vitro antimi-
crobial activity against a panel of pathogenic bacteria (Bacillus subtilis, Staphylococcus aureus, Klebsiella
pneumoniae and Pseudomonas aeruginosa) and fungi (Candida albicans, Candida parapsilosis, Aspergillus
niger and Cryptococcus neoformans) using Gentamicin and Fluconazole as standards, respectively. From
the SAR profile, the lead molecules were identified.

� 2010 Elsevier Ltd. All rights reserved.
Molecules with the 3-azabicyclo[3.3.1]nonane nucleus are of All 1-methyl-2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-ones 1–14

great interest due to their presence in a wide variety of naturally
occurring diterpenoid/norditerpenoid alkaloids and biological
activities.1 The 3-azabicyclo[3.3.1]nonane nucleus itself contains
an important class of piperidone pharmacophore2 and the SAR
studies on the piperidone heterocycle indicated that the nature
and position of substituents were important factors towards signif-
icantly effect the biological actions.3

Reports reveal the antimicrobial efficacy of oximes and oxime ethers
owing to the presence of AC@NAOAR functionality.4 An essential com-
ponent of the search for new leads in drug designing program is the syn-
thesis of molecules, which are novel, yet resembling known biologically
active molecules by virtue of the presence of some critical structural fea-
tures.5 Moreover, it would rather be achieved by an easier synthetic
strategy with stereo controlled product.

Altogether with an expectation of enhanced antimicrobial pro-
file, we synthesized new oximes and O-methyloximes of 2,4-dia-
ryl-3-azabicyclo[3.3.1]nonan-9-ones with CH3 group at C-1/C-7
and electron-withdrawing/donating F/Cl/Br/CH3/OCH3 substitu-
ents in ortho/meta/para positions of the phenyl at C-2 and C-4.

Synthetic strategy of 1-methyl-2,4-diaryl-3-azabicyclo[3.3.1]-
nonan-9-ones 1–14 and their oximes/O-methyloximes 15–28/29–
42 is depicted in Scheme 1.
All rights reserved.

: +82 51 629 6408.
were synthesized as single isomer with good yields in one-pot by
a modified and an optimized Mannich reaction.1a,6 Stereochemis-
try of the compounds were established by use of their H,H-COSY,
NOESY, HSQC and HMBC spectral data. The long-range couplings
by means of ‘W’ arrangement from the H,H-COSY as well as NOE
(Fig. 1) indicate the twin-chair conformation for the 3-azabicycle
with equatorial orientation of the aryl groups at C-2 and C-4. The
bridge-head proton H-5 appeared as a quintet in the most of the
compounds. However, in some compounds, it appeared as a broad
singlet/unresolved multiplet with a half-width ‘‘W1/2” of about
8 Hz, supporting the twin-chair conformation.7

E/Z isomerism is obvious while synthesizing the oximes or
oxime ethers from unsymmetrical ketones. However, in all cases,
only E isomer was achieved with >90% yields. The effect of oxima-
tion/oximination on 1H/13C NMR spectra was significant by the
allylic (A1,3) interaction between the N–O and C(5)–H bonds be-
sides the decrease in electronegativity at C-9 by the reduction of
C@O as C@N. In fact, A1,3 interaction is noteworthy (Fig. 2a) as
deshielded H-5 (syn a-proton) >1 ppm and shielded C-5 (syn a-car-
bon) about 7 ppm besides the electronegativity (oximation) effect
on that proton/carbon. Thus, the effect of A1,3 interaction domi-
nated the electronegativity effect on consecutive (syn) b position
and affect the c-carbon. Although, A1,3 effect was similar in oxime
ethers, due to the presence of electron-donating CH3 group at
oxime functionality, the oximino carbon C-9 and syn a-proton

http://dx.doi.org/10.1016/j.bmcl.2010.01.048
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Scheme 1. Reagents and conditions: (a) EtOH, warm, stirring; (b) HO–NH2.HCl,
CH3COONa�3H2O, EtOH, reflux; (c) CH3–O–NH2�HCl, CH3COONa�3H2O, EtOH, reflux.
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Figure 2. (a) Non-bonded 1,3-allylic interaction between the N–O and C(5)–H bo
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Figure 1. (a) Long-range couplings between the protons that are in ‘W’ arrangement.
orientation of the aryl groups at C-2 and C-4 of the 1-methyl-3-azabicycle. All compound
(b) Meaningful NOE observed in the NOESY spectrum of compound 2.
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H-5 were shielded by �1 and 0.15 ppm, respectively. On the basis
of NMR studies, we conceived that the oximes 15–28 and oxime
ethers 29–42 are exist in the twin-chair conformation with equato-
rial disposition of the aryl groups at C-2 and C-4 (Figs. 1a and 2),
which was further proved by XRD analysis (Fig. 3). Refer Supple-
mentary data for detailed NMR/XRD analysis.
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Accordingly, the compounds exist in the twin-chair conformation with equatorial
s exhibited a weak correlation between H-4a and H-6a comparing to H-2a and H-8a;

Figure 3. ORTEP of compound 16 with atoms represented as 30% probability
ellipsoids. Single crystal XRD analysis proved that the bicycle exists in a twin-chair
conformation with equatorial orientation of the ortho-fluorophenyl groups on both
sides of the secondary amino group. The compound exists in E configuration.
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Scheme 2. Reagents and conditions: (a) EtOH, warm, stirring; (b) HO–NH2�HCl,
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Synthesis of 7-methyl-2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-
ones 43–48 and their oximes/O-methyloximes 49–54/55–60 are
illustrated in Scheme 2.
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Figure 5. Significant NOE observed in the compounds 44b and 47, suggesting the cha
spectrum of 44b and 47 support the non-existence of the bicycle in the twin-chair confor
group at C-7.
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Figure 4. (a) Long-range couplings between the protons that are in ‘W’ arrangement, acc
the NOESY spectrum of 44a. Both H,H-COSY and NOESY suggest that the bicycle exists
Of the synthesized bicyclic ketones 43–48, the para-F (45),
meta-Cl (47) and para-Cl (48) compounds were achieved as single
isomer in good yields, whereas, ortho-F (43a, 43b), meta-F (44a,
44b) and ortho-Cl (46a, 46b) compounds were obtained as mix-
tures of two conformational isomers. Stereochemistry of the bicy-
clic ketones 43–48 were established on the basis of the observed
long-range couplings, NOE and W1/2 of the bridge-head protons
by H,H-COSY and NOESY spectra (Figs. 4 and 5). Accordingly, com-
pounds 43a, 44a, 45, 46a and 48 exist in the twin-chair conforma-
tion with equatorial orientation of all substituents, whereas 43b,
44b, 46b and 47 exist in the chair-boat conformation with equato-
rial orientation of the aryl groups at C-2/C-4 and exocyclic orienta-
tion of the CH3 group at C-7. The bridge-head protons in 43a, 44a,
45, 46a and 48 appeared as broad singlets, whereas, in 43b, 44b,
46b and 47, they observed as doublets with J of 9–10 Hz. According
to the a-effect by the introduction of CH3 at C-7, it was deshielded
about 6 ppm in 43–48, whereas, the effect reversed at C-1 by the
CH3 at C-1 in 1–14. The C-1 was shielded by 1–3 ppm depends
on the nature and position of the substituents in phenyl.

According to NMR data, it is clear that all 7-methyl-2,4-diaryl-
3-azabicyclo[3.3.1]nonan-9-ones 43–48 afforded the correspond-
ing oximes 49–54 and oxime ethers 55–60 with syn orientation
of the N–O to C(5)–H bond. Owing to this phenomenon, a non-
bonded interaction established between them, and as a conse-
quence, the syn-a proton H-5 deshielded about 1 ppm, whereas
the anti-a proton H-1 shielded by 0.05–0.1 ppm. Thus in oximes,
the Dd5,1 was P1.05 ppm, however, reduced to 0.90–0.95 ppm by
O-methylation. Stereochemistry of the oximes and oxime ethers
are shown in Figure 6 as witnessed by NMR studies, which were
further witnessed by XRD analysis of 53 and 54 (Figs. 7 and 8). Re-
fer Supplementary data for detailed NMR/XRD analysis.

All the synthesized oximes/oxime ethers were evaluated for
their in vitro antimicrobial activity against a panel of pathogenic
bacteria and fungi by standard broth micro-dilution technique
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Figure 7. ORTEP of compound 53 with atoms represented as 30% probability
ellipsoids. The bicycle exists in a chair–boat conformation with equatorial orien-
tation of the meta-chlorophenyl groups on both sides of the secondary amino group.
The molecule exists in E configuration with exocyclic orientation of the CH3 group
at C-7. Chlorine atom in one of the phenyl rings and oxygen atom of the oxime
functionally are disordered over two positions with site occupancy factors of 0.5.
One of the disordered oxygen atoms is omitted for clarity.

Figure 8. ORTEP of compound 54 with atoms represented as 30% probability
ellipsoids. According to XRD analysis, the bicycle exists in a twin-chair conforma-
tion with equatorial orientation of the para-chlorophenyl groups. Also, the analysis
witnessed the equatorial as well as exocyclic orientation of the CH3 group at C-7
and E configuration of the molecule.
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according to NCCLS guidelines,8 using Gentamicin and Fluconazole
as standards.

Data of the Table 1 describe the antibacterial activity of the syn-
thesized oximes/oxime ethers against pathogenic bacteria and sug-
gest the lead molecules. Among the oxime derivatives, compounds
with electron-withdrawing F/Cl/Br substituents at phenyl ex-
pressed moderate to good activity. Especially, the F and Cl substit-
uents at ortho or para positions of the phenyl showed maximum
activity. Among the 1-methyl oximes 15–28, 16, 18, 19 and 21
exhibited moderate activity against all strains and enhanced by
the introduction of a CH3 group at oxime functionality. Thus, 30,
32, 33 and 35 expressed a good activity profile against all strains
with the MIC range of 4–16 lg/mL as Gentamicin (MIC range 2–
16 lg/mL). Likewise, the oxime ethers 55a, 57, 58a and 60 also
exhibited broad-spectrum antibacterial activity, their MIC lies in
the range of 2–16 lg/mL against all strains, except 60 against Pseu-
domonas aeruginosa.
Careful analysis of the MICs in Table 2 provides the lead mole-
cules with good antifungal profile. Despite the position of CH3 in
the bicycle, all oxime ethers exhibited comparatively better activ-
ity than their oximes. Both 1- and 7-methyl substituted oxime
ethers with F/Cl substituents at ortho/para positions (30, 32, 33,
35, 55a, 55b, 57, 58a, 58b and 60) expressed promising antifungal
profile. Particularly, 7-methyl oxime ethers 55b and 58b registered
their best MIC in the range of 2–4 lg/mL against all tested fungi. In
addition, analogous oximes 49b and 52b exhibited their best MIC
at 4 lg/mL against Aspergillus niger and Candida albicans,
respectively.

In summary, libraries of 3-azabicyclo[3.3.1]nonan-9-ones/oxi-
mes/O-methyloximes with F/Cl/Br/CH3/OCH3 substituents at
ortho/meta/para position of the phenyl groups at C-2/C-4 and CH3

group at C-1/C-7 were synthesized in a stereospecific manner by
an easier strategy with high yield. All oximes and oxime ethers
were achieved only as E-isomers. Among the oxime derivatives,
irrespective of the nature and position of the substituents, all 1-
methyl compounds 15–42 exist in the twin-chair conformation



Table 1
Antibacterial activity of compounds 15–42 and 49–60

Compounds Minimum inhibitory concentration (MIC90)a in lg/mL

B. Subtilis S. aureus K. pneumoniae P. aeruginosa

15 >128 128 >128 >128
16 32 8 16 32
17 128 64 32 128
18 64 16 32 64
19 64 8 16 32
20 >128 64 64 >128
21 >128 64 16 >128
22 128 64 128 >128
23 >128 64 >128 >128
24 64 128 128 >128
25 128 128 >128 >128
26 64 64 128 128
27 128 128 >128 >128
28 128 32 64 >128
29 >128 64 128 >128
30 16 4 4 8
31 128 16 32 32
32 32 8 16 16
33 32 4 8 8
34 128 64 32 64
35 64 32 16 64
36 64 64 64 128
37 64 32 32 >128
38 32 32 128 128
39 32 64 64 128
40 32 32 32 64
41 64 32 128 >128
42 64 16 64 128
49a 16 8 16 32
49b 32 32 64 128
50a 128 32 32 64
50b >128 32 64 32
51 64 8 32 64
52a 32 16 32 32
52b 64 16 32 >128
53 32 64 32 64
54 32 32 16 32
55a 4 2 2 8
55b 8 16 16 32
56a 16 16 64 64
56b 32 32 64 64
57 16 4 8 16
58a 8 4 4 4
58b 32 8 16 16
59 64 32 32 128
60 16 16 8 32
Gentamicin 16 4 2 16

a MIC90 is the lowest concentration of an antimicrobial agent to significantly
inhibit the 90% growth of a pathogen after a period of incubation; MIC values are
represented in micrograms per millilitre.

Table 2
Antifungal activity of compounds 15–42 and 49–60

Compounds Minimum inhibitory concentration (MIC90) in lg/mL

C. albicans C. parapsilosis A. niger C. neoformans

15 >128 >128 >128 >128
16 8 8 64 64
17 32 64 128 >128
18 16 32 64 32
19 64 8 16 8
20 64 64 >128 128
21 32 64 64 32
22 64 64 128 >128
23 >128 >128 128 128
24 128 >128 64 >128
25 128 >128 64 128
26 >128 128 128 64
27 >128 >128 >128 128
28 128 >128 128 >128
29 128 >128 >128 >128
30 4 8 16 8
31 16 64 64 128
32 8 8 32 16
33 32 4 16 4
34 32 32 128 64
35 16 16 8 8
36 64 32 32 128
37 64 128 32 64
38 64 128 64 128
39 128 >128 32 64
40 64 64 128 128
41 >128 64 >128 128
42 64 128 128 >128
49a 64 128 64 64
49b 16 32 4 16
50a 128 64 64 >128
50b 64 32 32 64
51 32 64 64 32
52a 16 32 >128 32
52b 4 16 32 64
53 64 128 64 >128
54 64 64 32 64
55a 8 32 16 16
55b 2 2 2 4
56a 32 32 64 64
56b 8 16 16 32
57 16 64 16 8
58a 8 16 32 16
58b 4 4 2 2
59 16 8 32 32
60 32 16 64 16
Fluconazole 1 2 4 2
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with equatorial orientation of the aryl substituents at C-2 and C-4
of the 3-azabicycle. Of the 7-methyl compounds 49–60, 49a/50a/
51/52a/54/55a/56a/57/58a/60 and 49b/50b/52b/53/55b/56b/58b/
59, respectively, adopted the chair–chair and chair–boat conforma-
tions with exocyclic substitution of the methyl at C-7 along with
equatorial orientation of the aryl groups at C-2 and C-4. Among
the synthesized compounds, oximes with electron-withdrawing
F/Cl substituents at ortho/para positions of the phenyl exhibited
remarkable antibacterial as well as antifungal activity. Further,
the activity was enhanced by the introduction of a methyl group
at oxime functionality. Thus, the present SAR provides some lead
molecules with worthy antibacterial and antifungal activities. Fur-
thermore, to optimize the lead molecules and to develop better
antimicrobial agents, toxicity and mechanistic studies are planned
to carry out.
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