View Article Online / Journal Homepage / Table of Contents for this issue

Molybdenum-mediated Synthesis of Isoxazole Compounds through a Nitrosyl Insertion into a π -Allyl Ligand

Shie-Hsiung Lin,^a Shie-Ming Peng^b and Rai-Shung Liu*^a

^a Department of Chemistry, National Tsing Hua University, Hsinchu, 30043, Republic of China ^b National Taiwan University, Taipei 30002, Republic of China

The syntheses of compounds of the type CpMo(CO)₂[η^3 -anti-1-CH₂CH(OH)R-syn-3-R'CH₂-C₃H₃] are described; their reactions with excess nitrosonium tetrafluoroborate produce 3-(1'-R'CH₂CH=CH)-5-R-isoxazole, which involves a remarkable nitrosyl insertion into the π -allyl ligand as the key step.

In organic reactions the nitrosonium ion NO⁺ is known to act well both for electrophilic nitrosation and as an oxidizing reagent.^{1,2} In contrast, its role in organometallic reactions is merely a synthetic source for the metal–nitrosyl group.³ Little is known of the synthetic utility of the action of NO⁺ on a metal-bound organic moiety. Although efforts in this direction can be achieved through a NO⁺ (linear nitrosyl) insertion into a metal–carbon bond, the occurrence³ of this process is not as common as CO insertion, especially on the low-valent metals.⁴ The [CpMo(CO)(NO)(η^3 -allyl)]⁺ cation was first

reported by Faller and Rosan.⁵ Because of their highly electrophilic nature, cations of this type have been widely used as reactive intermediates for the synthesis of α -functionalized alkenes.⁶ We report here that in this NO-cationic system, the η^3 -allyl ligand is capable of undergoing a remarkable nitrosyl insertion,⁷ as a key step to produce isoxazole compounds.

The starting 1,3-diol 1 was conveniently prepared according to our procedure.⁸ Treatment of 1 with $(CF_3SO_2)_2O$ in

1; R = Ph

OH

exo -CpMo+(CO)(NO)

5

OH iv

endo -CpMo⁺(CO)(NO)

4b

Ref. 8

,OH

[M⁺]CF₃SO₃

H⁸ OH

М

3; R' = Me, R = Ph

6

Scheme 1 Reagents and conditions: $M = CpMo(CO)_2 i$, $(CF_3SO_2)_2O$ (1.0 equiv.), Et_2O (-78 °C); ii, R'_2CuLi (6.0 equiv.); Et_2O , $NH_4Cl(aq)$, R' = Me (56%); iii, $NOBF_4$ (1.2 equiv.), MeCN (-10 °C, 1 h), Et_2O (-10 °C), 90%; iv, MeCN, 28 °C, 10 h; v, $NOBF_4$ (10.0 equiv.), 0 °C, 6 h; vi, $Na_2CO_3(aq)$, 0 °C

Table 1 M = CpMo(CO)₂ i, NOBF₄ (10.0 equiv.), MeCN, 0 °C 4 h

^{*a*} Yields were calculated based on the amount of the Mo–allyl compounds. ^{*b*} Consisting of 1:1 diastereoisomers. ^{*c*} All organic products were purified by preparative TLC on silica.

J. CHEM. SOC., CHEM. COMMUN., 1992

anhydrous diethyl ether (-78 °C) deposited a red precipitate of s-trans-cis-1,3-diene cation 2 which reacted in situ with Me_2CuLi in diethyl ether (-78 °C) to give 1-anti-3-syn-allyl compound 3 as a single diastereoisomer (56%). The exo-anti, syn-configuration of 3 is supported by the ¹H NMR data. \dagger Treatment of 3 with nitrosonium tetrafluoroborate (1.2 equiv.) in MeCN (-10 °C, 1 h) followed by precipitation with anhydrous diethyl ether, afforded the exo-3-anti, syn‡ cation 4a as a single stereoisomer (90%). At 28 °C, the exo-4a underwent a slow and irreversible isomerization to the more stable endo isomer 4b (>90%, 10 h). Treatment of 4a with excess nitrosonium tetrafluoroborate (10-fold excess, 0 °C) in MeCN, causes demetallation of the metal complex to occur liberating an organic component 5 isolated in 48% yield. Its structure was identified as an isoxazole based on an X-ray diffraction study§ of its phenyl relative 15 (vide infra). According to the ORTEP drawing (Fig. 1) the η^3 -allyl ligand is capable of undergoing a rare nitrosyl insertion which adds regioselectively at the anti-allylic terminus. During the course of isoxazole production, an aqueous Na₂CO₃ solution was added to quench the reaction, which gave the dieneone 6 (11%) and 5 (18%). The endo isomer 4b likewise gave the isoxazole in 18% under the same conditions.

As isoxazole belongs to a class of valuable aromatic heterocyclic compounds,⁹ it is important to examine the generalization of this reaction. The results are given in Table 1. The starting *anti,syn*-allyl compounds **7–13** were prepared *via* a similar procedure according to Scheme 1. For convenience, the isoxazole synthesis was conducted in a one-pot reaction. The yields were moderate: 35-55%. Of particular interest is the fact that no isoxazole formation is detected for the η^3 -*syn*,*syn*-allyl isomer **14**¹⁰ (entry 9) under the same conditions; the compound remained almost completely as the nitrosyl allyl cation as shown by IR spectra [v(CO) 2083vs, v(NO) 1711vs cm⁻¹].

Fig. 1 ORTEP drawing of complex **15**. Pertinent bond distances (Å): C(12)-C(11) 1.498(4), C(11)-C(10) 1.322(5), C(9)-C(10) 1.457(4), N-C(9) 1.314(4), N-O 1.413(3), C(7)-C(8) 1.345(4), C(8)-C(9) 1.410(4), C(7)-O 1.368(4).

⁺ The *exo*-conformation of **3** is indicated by the *anti*-H-3 proton resonance at δ 1.83, closer to that (δ 1.67) of the *exo* isomer of CpMo(CO)₂(η^3 -syn-1-MeC₃H₄)¹³ than to the corresponding proton resonance of the *endo* isomer at δ 2.76. The *anti*,syn-configuration of **3** is supported by the magnitude of the coupling parameter J_{34} 10.4 and J_{45} 8.0 Hz, indicative of *trans*- and *cis*-coupling, respectively. Moreover, the chemical shift of the *syn*-H-5-proton is δ 3.37 far downfield from that of the H-3 proton (δ 1.83).

[‡] The *anti*,*syn*-configuration of **4a** and **4b** is likewise indicated by the magnitude of the coupling constant J_{34} 11–12 and J_{45} = 8–9 Hz.

§ Complex 15 crystallizes in the monoclinic space group $P2_1/c$, a = 10.3511(13), b = 5.7728(18), c = 24.103(3) Å, $\beta = 101.242(10)^\circ$, V = 1400.4(5) Å³, Z = 4, final R = 0.037 and $R_w = 0.038$ for 1114 reflections with $I > 2\sigma(I)$ out of 1821 unique reflections: 182 parameters. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Me

617

Scheme 2 $M^+ = CpMo(CO)NO^+$

We propose the mechanism in Scheme 2. The role of nitrosonium ion may be twofold (*i*) to oxidize secondary alcohols to ketones¹¹ and (*ii*) to promote¹² a nitrosyl insertion into the *anti*-alllic nitroso compounds. Further hydrogen abstraction of the resulting allylic nitroso compound **22**, produces an oximine which is expected to give an isoxazole after an intramolecular cyclization. The details of the insertion step (*ii*) are not clear at the present stage. Methods to elucidate the mechanism are under investigation.

Received, 12th November 1992; Com. 1/05742A

References

I G. A. Olah, Aldrichim. Acta, 1979, 12, 189; G. A. Olah, G. Salem, J. S. Staral and T. L. Ho, J. Org. Chem., 1978, 43, 173.

- 2 N. Ichinose, K. Mizuno, T. Tamai and Y. Otsuji, *Chem. Lett.*, 1988, 233; M. L. Scheinbum and M. B. Diens, *Tetrahedron Lett.*, 1971, 2205.
- 3 G. B. Richter-Addo and P. Legzdins, *Chem. Rev.*, 1988, 88, 991;
 W. L. Gladfelter, *Adv. Organomet. Chem.*, 1985, 24, 41.
- J. Cheng and R. G. Bergman, J. Am. Chem. Soc., 1987, 109, 4298;
 M. D. Seidler and R. G. Bergman, J. Am. Chem. Soc., 1984, 106, 6110 and references cited therein.
- 5 J. W. Faller and A. M. Rosan, Ann. N. Y. Acad. Sci., 1977, 295, 18.
- 6 A. J. Pearson, Synlett, 1990, 10; M. Green, S. Greenfield, J. Grimshire, M. Kersting, A. G. Orpen and R. A. Rodrigues, J. Chem. Soc., Chem. Commun., 1987, 97; A. J. Pearson, S. Mallik, M. D. Penny and W. J. Youngs, J. Am. Chem. Soc., 1990, 112, 8034.
- 7 Only one precedent is reported for a NO insertion into a π-allyl group, see M. W. Schoonover, E. C. Baker and R. Eisenberg, J. Am. Chem. Soc., 1979, 101, 1880.
- 8 W. J. Vong, S. M. Peng, S. H. Lin and R. S. Liu, J. Am. Chem. Soc., 1991, 113, 573.
- 9 S. A. Lang and Y. I. Lin, in Comprehensive Heterocyclic Chemistry; The Structure, Reactions, Synthesis and Uses of Heterocyclic Compounds, ed. A. R. Katritzky and C. W. Rees, Pergamon Press, London, 1984, vol. 6, p. 416.
- 10 For synthesis of 13, see S. H. Lin, Y. J. Yang and R. S. Liu, J. Chem. Soc., Chem. Commun., 1991, 1004.
- 11 G. A. Olah and T. L. Ho, Synthesis, 1976, 610.
- 12 External NO⁺ ion promoting a nitrosyl insertion has been reported by Legzdins and coworkers, see P. Legzdins, B. Wassink, F. W. B. Einstein and A. C. Willis, *J. Am. Chem. Soc.*, 1986, 108, 317; P. Legzdine, G. B. Richter-Addo, F. W. B. Einstein and R. H. Jones, *Organometallics*, 1987, 6, 1807.
- 13 J. W. Fall, C. C. Chen, M. J. Mattina and A. Jakubowski, J. Organomet. Chem., 1973, 52, 361.