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Carbon-carbon bond formation from radicals provides
an attractive alternative to methods based on anions,
with carbon radicals having different selectivity from the
corresponding anionic reagents. As a result, this ap-
proach is being increasingly employed in organic syn-
thesis.2
Ketene silyl acetals of allylic esters are the precursors

of the Ireland-Claisen rearrangement3 and are usually
prepared by deprotonation and trapping with Me3SiCl.
A 1,4-addition to allylic acrylates and silylation can also
be used;4,5 however, since the acrylates have four poten-
tial electrophilic sites that can result in 1,2-addition (a),
1,4-addition (b), SN2 (c), and SN2′ (d) positions (Figure
1), it is necessary to control the regiochemistry. Alkyl-
lithium and magnesium reagents selectively add to the
carbonyl carbon in a 1,2-fashion, while dialkylcopper
lithium reagents react exclusively at the SN2′ position.4
Here, the 1,4-selectivity of alkyl radicals derived by
reduction with activated manganese6 was utilized in the
preparation of ketene silyl acetals. It was found that the
successive Ireland-Claisen rearrangement from the
intermediate silyl acetals proceeded smoothly at ambient
temperature.
Treatment of acrylate 1 with isopropyl iodide and

manganese7 activated by a catalytic amount of PbCl28
and Me3SiCl9 in a mixed solvent of DMF and THF at 90
°C for 3 h afforded 1,4-adduct 2 in 47% yield (Table 1,
run 1).10 When an equimolar amount of Me3SiCl was
used with the substrate, the adduct 2 and rearranged

product 3 were produced in 48% and 43% yields, respec-
tively, at 25 °C for 30 min (Table 1, run 2). This result
suggests that the rearrangement does not proceed from
a manganese enolate anion11 but, rather, occurs after
trapping to its silyl acetal. It is known that 4-(dimethy-
lamino)pyridine (DMAP) and N-methylimidazole (NMI)
accelerate the silylation step,12 and thus, when added,
the sequential Claisen rearrangement proceeded smoothly,
and the acid 3 was obtained in excellent yields (Table 1,
runs 4 and 5). The double bond produced was proven to
have E geometry as expected from the Ireland-Claisen
rearrangement.13
Primary, secondary, and tertiary alkyl iodides can be

used for the sequential 1,4-addition and Ireland-Claisen
rearrangement, the results of which are shown in Table
2.17 Because the reduction of a primary iodide proceeds
slower than that of a secondary iodide, in this case, the
reaction was conducted with 5 mol % of PbCl2 and heated
at 40 °C (Table 2, run 7). Although 1,4-addition occurred
smoothly with tert-butyl iodide in almost quantitative
yield, the successive rearrangement proceeded slowly,
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Figure 1. Potential electrophilic sites of allyl acrylate.

Table 1. Effects of Additives on 1,4-Addition and
Sequential Rearrangementa

run
Me3SiCl
(equiv)

additive
(equiv) T (°C)

time
(h)

yield
of 2b (%)

yield
of 3b (%)

1 0.1 90 3 47 0
2 1.0 25 0.5 48 43
3 3.0 25 0.5 43 31
4 3.0 DMAP, 3.0 25 0.5 14 81
5 3.0 NMI, 3.0 25 0.5 7 92
a Reaction was conducted on a 1.0 mmol scale. Three mol of

isopropyl iodide, 6.0 mol of manganese, and 0.06 mol of PbCl2 were
used per mol of acrylate 1. R ) n-C5H11. b Isolated yields.
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probably due to steric hindrance around the newly
formed carbon-carbon bond (Table 2, run 8). Heating
the mixture at 40 °C, however, did not improve the yield
of rearranged carboxylic acid. In contrast to the reported
Ireland-Claisen rearrangement,3b a substituent at R2 did
not accelerate the rearrangement. For example, the
reaction at 25 °C for 1 h produced the rearranged
carboxylic acid and 1,4-adduct in 30% and 47% yield,
respectively, while the reaction at 40 °C for 3 h produced
the acid in 83% yield (Table 2, run 5). The product in
run 5 was obtained as an anti/syn mixture of diastereo-
mers in a 48/52 ratio.3b The low diastereoselectivity
stems from the fact that both E and Z ketene silyl acetals
are produced in an almost 1/1 ratio under the condi-
tions.18

Treatment of propargylic acrylate 4 with isopropyl
iodide and the manganese system at 40 °C for 1 h
produced the corresponding allenic carboxylic acid 5 in
86% yield as a 1/1 mixture of diastereomers (eq 1).

A plausible mechanism for this sequential reaction is
shown in Scheme 1. The reduction of an iodoalkane with
the manganese-PbCl2-Me3SiCl system produces the
corresponding alkyl radical 6, which has a sufficient
lifetime for intermolecular addition to an acrylate, even
under the reduction conditions. In contrast, reduction
of the adduct radical 7 takes place smoothly to give an
ester enolate that is trapped with Me3SiCl. The Ireland-
Claisen rearrangement and hydrolysis affords an (E)-γ,δ-
unsaturated acid. This sequential reaction is made
possible by the moderate manganese reducing system
discriminating between the two radicals 6 and 7.6
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(17) Typical Procedure for 3. Me3SiCl (0.38 mL, 3.0 mmol) and
N-methylimidazole (NMI, 0.25 g, 3.0 mmol) were added at 25 °C to a
mixture of manganese powder (0.33 g, 6.0 mmol) and PbCl2 (17 mg,
0.060 mmol) in THF (4 mL) under an argon atmosphere, and the
mixture was stirred at 25 °C for 30 min. To the mixture was added a
solution of an allylic acrylate 1 (0.18 g, 1.0 mmol) in DMF (1 mL) at
25 °C. A solution of isopropyl iodide (0.51 g, 3.0 mmol) in DMF (1
mL) was then added to the mixture at 25 °C, producing an exothermic
reaction (ca. 35 °C). After the resulting mixture was stirred at 25 °C
for 30 min, saturated NH4Cl solution (10 mL) was added, and the
mixture was filtered with Celite and washed well with ether (3 × 10
mL). Organic extracts were washed with brine (10 mL), dried over
anhydrous MgSO4, and concentrated in vacuo. Purification of the
crude product by column chromatography on silica gel (hexane-ethyl
acetate, 30:1) gave the γ,δ-unsaturated acid 3 (0.21 g, 0.92 mmol) in
92% yield.

(18) Trapping of the enolate derived from 2-phenylpropyl acrylate
and isopropyl iodide with manganese, PbCl2, and Me3SiCl produced E
and Z ketene silyl acetals in a 44/56 ratio.

Table 2. Sequential 1,4-Addition and Ireland-Claisen
Rearreangementa

run R1 R2 R3 R4 R5 T (°C)
time
(h)

yieldb
(%) E/Zc

1 i-Pr H H n-C5H11 H 25 0.5 92 >99/<1
2 H H c-C6H11 H 25 0.5 95 >99/<1
3 H H Ph H 25 0.5 75 98/2
4 H H -(CH2)5- 25 0.5 88
5 Me H H H 40 2 83d
6 H Me H H 40 3 75e
7 n-Pr H H n-C5H11 H 40 2 88f >99/<1
8 t-Bu H H n-C5H11 H 25 0.5 52g >99/<1
a Reaction was conducted on a 1.0 mmol scale. See typical

procedure. b Isolated yields. c Determined by 1H NMR and/or 13C
NMR analysis of the corresponding methyl ester. d Anti/syn ) 48/
52. e 1,4-Adduct was obtained in 20% yield. f 5 mol % of PbCl2 was
used. g 1,4-Adduct was produced in 42% yield. When the mixture
was treated at 40 °C for 3 h, the rearranged carboxylic acid was
produced in 53% yield along with the 1,4-adduct in 39% yield.

Scheme 1
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