

CH2OH+O2 reaction rate constant measured by detecting HO2 from photofragment emission

W. C. Wang, Masako Suto, and L. C. Lee

Citation: The Journal of Chemical Physics **81**, 3122 (1984); doi: 10.1063/1.448015 View online: http://dx.doi.org/10.1063/1.448015 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/81/7?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Reaction rate constant of HO2+O3 measured by detecting HO2 from photofragment fluorescence J. Chem. Phys. **85**, 5027 (1986); 10.1063/1.451692

Rate constant for the reaction HO2+NO→OH+NO2 J. Chem. Phys. **70**, 1662 (1979); 10.1063/1.437680

Absolute rate constant for the reaction OH (v=0)+O3 \rightarrow HO2 +O2 over the temperature range 238–357°K J. Chem. Phys. **70**, 984 (1979); 10.1063/1.437488

Rate constant of the reaction HO2+CIO→HOCI+O2 J. Chem. Phys. **69**, 2925 (1978); 10.1063/1.436850

Rate constant of OH + OH = H2O + O from 1500 to 2000 K J. Chem. Phys. **60**, 4676 (1974); 10.1063/1.1680967

$CH_2OH + O_2$ reaction rate constant measured by detecting HO_2 from photofragment emission

W. C. Wang, Masako Suto, and L. C. Lee Department of Electrical and Computer Engineering, San Diego State University, San Diego, California 92182

(Received 21 March 1984; accepted 6 June 1984)

The HO₂ radical was produced in a flow tube by the Cl + CH₃OH \rightarrow HCl + CH₂OH and CH₂OH + O₂ \rightarrow HO₂ + CH₂O reactions. HO₂ was detected by the OH($A^{2}\Sigma^{+}\rightarrow X^{2}\Pi$) photofragment emission produced by photodissociative excitation of HO₂ in the vacuum ultraviolet region. Using this detection method, the rate constant for the CH₂OH and O₂ reaction was measured to be $(1.4 \pm 0.4) \times 10^{-12}$ cm³/s.

I. INTRODUCTION

The hydroperoxyl radical HO₂ is an important intermediate in atmospheric chemistry.¹ The detection of HO₂ and the determination of its reaction rates with other atmospheric species are difficult, because its steady-state concentration in various media is always low. In the last two decades, the HO₂ radical has been extensively studied by various techniques, such as absorption,^{2–6} emission,⁷ laser magnetic resonance (LMR),⁸ and photofragmentation.^{9–11}

In our laboratory, we recently extended the photofragment technique¹¹ to detect HO₂ from the OH($A^{2}\Sigma^{+} \rightarrow X^{2}\Pi$) emission. HO₂ was produced by a three-body reaction: H + O₂ + M \rightarrow HO₂ + M. When HO₂ was excited by the Xe resonance line at 147 nm, an emission band in the 310 ± 10 nm region was observed, which was attributed to the OH($A^{2}\Sigma^{+} \rightarrow X^{2}\Pi$) system.

In this experiment HO_2 is produced by the following reactions^{12,13}:

CH₃OH + Cl→CH₂OH + HCl(
$$k_1 = 6.3 \times 10^{-11} \text{ cm}^3/\text{s}$$
),(1)
CH₂OH + O₂→HO₂ + CH₂O($k_2 = 2^{+2}_{-1} \times 10^{-12} \text{ cm}^3/\text{s}$),
(2)

where k_2 was measured by Radford¹³ using LMR technique. His value is 40 times larger than that reported previously.¹⁴

The 1983 NASA data evaluation panel¹⁵ indicated that the effect of wall loss of CH₂OH in Radford's measurement could have introduced a large error. A further measurement for this rate constant is desirable. CH₂OH is a possible intermediate species in the tropospheric methane oxidation cycle,¹⁶ its reaction rate constant is thus of interest.

Here we measure k_2 by monitoring HO₂ by its OH($A^2\Sigma^+ \rightarrow X^2\Pi$) photofragment emission. This experiment demonstrates that the present technique is useful for the measurement of HO₂ kinetics.

II. EXPERIMENTAL

The experimental setup is shown in Fig. 1. Chlorine atoms were produced by a microwave discharge of a trace of Cl_2 in 1–3 Torr of He. The power of the microwave discharge (Opthos Instruments) was set at 30 W. Oxygen was added downstream, and methanol (CH₃OH) was fed through a movable injector of 0.63 cm o.d. with radial perforation at the end. Surrounding the injector was a flow tube which had a length of 30 cm and an inner diameter of 1.24 cm. Both the flow tube and the movable injector were coated with halocarbon wax. The linear flow velocity in the flow tube was about 1050 cm/s and the reaction time ranged from a few ms to about 20 ms, depending on the position of the injector. O_2 could enter the gas cell either near the microwave discharge or near the gas cell. The flow rate was measured by a mass flow meter (Matheson model 8160).

The excitation light source was a sealed Xe resonance lamp with a MgF_2 window. The light source intensity was monitored by a CsI photodiode (Hamamatsu R 1187). A gas mixture of 1% CH₄ in Ar at atmospheric pressure was flowed through between the Xe lamp and the gas cell in order to block the 129.5 nm line and to transmit the 147 nm line. The optical path for the gas filter is 3 cm. The photoabsorption cross sections of CH₄ are 1.8×10^{-17} cm² at 129.5 nm^{17} and about 10^{-20} cm² at 147 nm.¹⁸ The 129.5 nm line will be absorbed completely, while the 147 nm line is hardly attenuated (<1%). In fact, when the gas mixture was replaced by N₂ to let both lines through, the OH($A \rightarrow X$) emission intensity did not increase significantly, in contrast to our previous experiment¹¹ in which the OH emission intensity increased by a factor of 2-6. This result indicates that the current HO₂ production method does not produce a significant amount of H_2O . Because of its negligible concentration, H_2O will not produce a sufficient $OH(A \rightarrow X)$ emission to interfer the signal from HO_2 . Therefore, the HO_2 in the cur-

FIG. 1. Schematic diagram of the experimental setup.

© 1984 American Institute of Physics

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 141.209.100.60 On: Mon. 22 Dec 2014 10:02:18

rent system can be detected by the light source of wavelength shorter than the threshold $(137 \text{ nm})^{19}$ for photodissociating H₂O into OH(A) + H. We have tried the Kr 123.6 nm line for detecting HO₂ in this experiment, and found the results being consistent with that of the Xe 147 nm line.

The OH($A^{2}\Sigma^{+} \rightarrow X^{2}II$) photofragment emission was detected by a cooled photomultiplier tube (PMT, EMI 9558QB) with an optical filter at 310 ± 10 nm. The PMT output signal was processed by an ORTEC pulse counting system.

The gas mixtures of 1% Cl₂ in He and 5.2% O₂ in He (supplied by Matheson) were used without purification. The O₂ concentration has been checked by measuring its absorption at 147 nm whose absorption cross section is known.²⁰ The methanol (supplied by Fisher, purity >99.9%) vapor was carried by He into gas cell. The concentration of methanol was determined from the ratio of the methanol vapor pressure (120 Torr at room temperature) to the pressure of carrier gas. The gas pressure was measured by a Baratron manometer (MKS Instruments).

III. RESULTS AND DISCUSSION

A. Emission from photofragment of HO₂

When HO_2 is irradiated by the Xe resonance line at 147 nm, it photodissociates,¹¹

$$HO_2 + h\nu \rightarrow OH^*(A^2\Sigma^+) + O(^3P), \qquad (3)$$

the OH*($A^{2}\Sigma^{+}$) emits around 310 nm. The HO₂ concentration is monitored by observing the OH($A^{2}\Sigma^{+} \rightarrow X^{2}\Pi$) emission intensity.

The emission produced from the UV photoexcitation of the reactants and products of reactions (1) and (2) was investigated. A background emission from the scattered light of the Xe lamp and from the excitation of CH_3OH (~30 counts/mTorr s) and Cl_2 (~1 count/mTorr s) by the 147 nm line was observed. The $OH(A \rightarrow X)$ emission was obtained by subtracting the background signal from the intensity observed. A chemiluminescence was observed when O_2 was added at a high flow velocity (> 1800 cm/s) and a short reaction distance. The chemiluminescence was probably caused by the reactions of O_2 with some excited species produced in the microwave discharge. This chemiluminescence is minimized by slowing down the flow velocity and increasing the reaction distance. For the loss rate measurement of CH₂OH, where the short reaction distance was required in some cases, the chemiluminescence intensity was obtained by turning off the Xe lamp and was subtracted from the total emission.

The emission intensities observed at various methanol pressures are shown in Fig. 2, where the pressures of Cl_2 , O_2 , and He were fixed at 13 mTorr, 20 mTorr, and 1.5 Torr, respectively. The reaction distance inside the flow tube was fixed at 9 cm, which is typical for most measurements unless specified. The emission intensity increases with increasing [CH₃OH] at low pressure and reaches a plateau at pressures higher than 6 mTorr. The signal level at the high [CH₃OH] corresponds to a [HO₂] of about 4×10^{11} cm⁻³ in the gas cell and about 10^{13} cm⁻³ in the flow tube as compared with the H + O₂ + M system.¹¹ Since the CH₂OH is the only expect-

FIG. 2. The OH($A \rightarrow X$) emission intensity as a function of the CH₃OH pressure. The Cl₂, O₂, and He pressures are 13 mTorr, 20 mTorr, and 1.5 Torr, respectively.

ed product for the Cl and CH₃OH reaction, ¹² every Cl will be converted into HO₂ if the loss is neglected. The initial [Cl] may thus be nearly equal to 10^{13} cm⁻³. The emission was observed at a [CH₃OH] as low as 0.4 mTorr as shown in Fig. 2. This result indicates that [Cl] is not higher than 0.4 mTorr, because for the case of [Cl] > [CH₃OH], HO₂ will be destroyed by the excess Cl ($k = 4 \times 10^{-11}$ cm³/s¹⁵) that decreases the emission signal greatly.

The dependence of the OH($A^2\Sigma^+ \rightarrow X^2\Pi$) emission intensity on the Cl₂ pressure is shown in Fig. 3, where [CH₃OH] is 9 mTorr, [O₂] is 20 mTorr, and [He] is 1.5 Torr. The highest [Cl] or [HO₂] estimated from the emission intensity is about 10¹³ cm⁻³ in the flow tube. The [Cl] increases with increasing [Cl₂] at low [Cl₂] and then reaches a plateau at high [Cl₂].

The emission intensity vs O_2 pressure for a methanol pressure of 9.5 mTorr is shown in Fig. 4, where the Cl_2 partial pressure is 13 mTorr and the He pressure is about 1.5 Torr. The emission intensity increases with increasing O_2 partial pressure at low $[O_2]$ and reaches a plateau at high $[O_2]$. The emission intensity decreases at $[O_2] > 30$ mTorr, which is partly due to the attenuation of the 147 nm light by O_2 absorption, which will be further discussed later. The dependence of the emission intensity on $[O_2]$ is used to derive the reaction rate constant k_2 as described below.

B. Rate equations

For a first order approximation, the rate equations for the reactions (1) and (2) can be written as

FIG. 3. The OH($A \rightarrow X$) emission intensity as a function of the Cl₂ pressure. The CH₃OH, O₂, and He pressures are 9 mTorr, 20 mTorr, and 1.5 Torr, respectively. The [Cl] at [Cl₂] = 13 mTorr is about 10¹³ cm⁻³.

FIG. 4. The OH($A \rightarrow X$] emission intensity as a function of the O₂ pressure. The He, Cl₂, and CH₃OH are 1.5 Torr, 13 mTorr, and 9.5 mTorr, respectively. The solid line is fit by the numerical solutions of Eqs. (4a)-(4d) with $k_2 = 1.4 \times 10^{-12}$ cm³/s and $k_L = 185$ s⁻¹.

$$\frac{d}{dt}[CH_3OH] = -k_1[CH_3OH][Cl], \qquad (4a)$$

$$\frac{d}{dt}[\text{Cl}] = -k_1[\text{CH}_3\text{OH}][\text{Cl}], \qquad (4b)$$

$$\frac{d}{dt}[CH_2OH] = k_1[CH_3OH][Cl]$$
$$-k_2[O_2][CH_2OH] - k_2[CH_2OH], (4c)$$

$$-k_2[O_2][CH_2OH] - k_L[CH_2OH], (4c)$$

$$\frac{d^{2}}{dt}[HO_{2}] = k_{2}[CH_{2}OH][O_{2}] - k_{w}[HO_{2}],$$
(4d)

where k_L and k_w are the loss rates of CH₂OH and HO₂, respectively. The loss mechanism of CH₂OH could be the destruction caused by the wall or its chemical reaction with other species in the flow tube. The loss rate of HO₂ by walls is about 7 s⁻¹, as estimated from the data¹¹ that [HO₂] decreases by a factor of 2 in a residence time of 100 ms.

When $[CH_3OH] > [Cl]$, as is true for most cases, [CH₃OH] can be assumed constant. The $[HO_2]$ can then be obtained from solving Eqs. (4b)–(4d) analytically,

[OI

$$[HO_{2}] = \frac{[CI]_{0}}{1 + k_{L}/k_{2}[O_{2}]} \times \left[1 - \frac{e^{-(k_{2}[O_{2}] + k_{L})t}}{1 - (k_{2}[O_{2}] + k_{L})/k_{1}[CH_{3}OH]}\right], \quad (5)$$

where $[Cl]_0$ is the initial value of [Cl], and $k_w t < 1$ is assumed.

If $(k_2[O_2] + k_L)t > 1$, which could be satisfied by typical experimental conditions, then Eq. (5) is approximated by

$$[HO_2] \sim \frac{[Cl]_0}{1 + k_L / k_2[O_2]} = \frac{[HO_2]_{max}}{1 + k_L / k_2[O_2]}, \quad (6)$$

where $[HO_2]_{max}$ is measured at high $[O_2]$. The k_2 value is determined as

$$k_2 \sim k_L / [O_2]_{1/2},$$
 (7)

where $[O_2]_{1/2}$ is the O_2 concentration at $[HO_2]/[HO_2]_{max} = 1/2$.

The $[O_2]_{1/2}$ is obtained from the dependence of the emission intensity on the $[O_2]$ as shown in Fig. 4. Thus, k_2 will be determined if k_L is known. The k_L values measured at various Cl_2 and CH_3OH pressures are described below.

C. CH₂OH loss rate

The loss rate of CH_2OH in the flow tube k_L is measured by a slight modification of the experimental arrangement. The O_2 inlet near the microwave discharge is closed and a few mTorr of O_2 is fed through the inlet near the gas cell (see Fig. 1). Since the pumping speed is high, it is not likely that O_2 could diffuse back into the flow tube, so O_2 reacts with CH_2OH only in the gas cell. Meanwhile CH_2OH suffering its inside the flow tube loss will decay $[CH_2OH] = [CH_2OH]_0 e^{-k_L t}$ before it reaches the gas cell, where t is the reaction time inside the flow tube. Once the CH_2OH enters the gas cell, it will react with O_2 to form HO_2 . The $[CH_2OH]$ is thus equal to $[HO_2]$, which can be monitored from the OH($A^{2}\Sigma^{+} \rightarrow X^{2}\Pi$) emission intensity. The k_L value can be determined from the plots of $\ln[[CH_2OH]/$ $[CH_2OH]_0$ vs t, where the reaction time is varied by moving the position of the CH₃OH injector.

Two examples of the k_L measurements are shown in Figs. 5(a) and 5(b) where $[Cl_2] = 13$ mTorr and $[CH_3OH] = 4.7$ and 9.5 mTorr, respectively. The distance z was measured from the end of the injector to the end of the flow tube. Using the flow velocity of 1050 cm/s, k_L was determined to be 185 s⁻¹ for both cases in Fig. 5.

The dependence of k_L on [CH₃OH] is investigated as shown in Fig. 6. The data are taken at the Cl₂ pressure of 13 mTorr, which yields a [Cl] of about 10¹³ cm⁻³. It should be noted that the signal level decreases with decreasing [CH₃OH], so it is not practical to measure k_L at very low [CH₃OH]. When [CH₃OH] is smaller than 1.5 mTorr, k_L increases with decreasing [CH₃OH]. This increase may be caused by the destruction of CH₂OH by Cl, which becomes prominent when the [CH₃OH] is low.

When $[CH_3OH] > 1.5 \text{ mTorr}$, k_L is approximately constant of about 185 s⁻¹. Since [Cl] is quickly consumed at high [CH₃OH], it does not contribute significantly to the CH₂OH loss. Instead, the loss is mainly caused by walls. This point is further checked by measuring k_L at varied initial [Cl]. The k_L values vary less than 10% as [Cl₂] varied from 2 to 13 mTorr at [CH₃OH]~5.4 mTorr. The result clearly indicates that in the case of high [CH₃OH] the de-

FIG. 5. The OH($A \rightarrow X$) emission intensity as a function of the CH₃OH injector position. The O₂ inlet is near the gas cell. The distance z is measured from the end of injector to the end of flow tube. The flow velocity is 1050 cm/s. The Cl₂ pressure is 13 mTorr and the pressures of CH₃OH are (a) 4.7 mTorr and (b) 9.5 mTorr.

J. Chem. Phys., Vol. 81, No. 7, 1 October 1984

struction of CH₂OH by Cl is negligible as compared with the wall loss, namely $k_L \sim k_{wall}$. The k_L values measured are reproducible over a long period of time.

The wall loss rate of about 185 s^{-1} measured in this experiment is larger than Radford's measurement¹³ of 37 s⁻¹ by a factor of 5. The loss rate depends on the experimental conditions. According to gas kinetics theory, the wall destruction in a cylinder is²¹

$$k_L = \frac{\beta \langle v \rangle}{2r},\tag{8}$$

where β is the fraction of wall collisions that destroy CH₂OH, $\langle v \rangle$ is the mean molecular speed, and r is the radius of the flow tube. The flow tube (r = 0.62 cm) used in this experiment is smaller than that of Radford (r = 1.5 cm). This accounts for the k_L value in this experiment being larger by a factor of 2.4. The $\langle v \rangle$ values for both experiments were nearly the same, because they were both performed at room temperature. Thus, the higher k_L value in the current experiment may indicate that the current β value is larger than that of Radford's experiment by a factor of about 2.

D. $CH_2OH + O_2$ reaction rate constant

The k_L values and the O₂ dependencies of the emission intensity were measured several times. These two measurements were alternatively performed by introducing O₂ through different inlets either near the microwave discharge or near the gas cell as shown in Fig. 1.

For the determination of $[O_2]_{1/2}$ from the emission intensity as shown in Fig. 4, a correction for the attenuation of the light source intensity by O_2 needs to be made. The emission intensity is given by

$$I_e = CI_0 e^{-n\sigma l} [\mathrm{HO}_2], \tag{9}$$

where C is a constant, n is the O₂ concentration, $\sigma = 1.4 \times 10^{-17}$ cm² is the absorption cross section²⁰ of O₂ at 147 nm, and l is the optical path length (15 cm).

The $[O_2]_{1/2}$ is about 4 mTorr as determined from Fig. 4, where the [CH₃OH] of 9.5 mTorr is much larger than the [Cl]₀ of 10¹³ cm⁻³, and the [HO₂] is obtained from the emission intensity corrected for O₂ absorption. Substituting into Eq. (7) with $k_L = 185 \text{ s}^{-1}$, the k_2 value obtained is $1.4 \times 10^{-12} \text{ cm}^3$ /s. The k_2 values determined for several runs are distributed within 15% of this value.

To ensure that the approximations made above are appropriate, we have solved Eqs. (4a)-(4d) numerically using $k_2 = 1.4 \times 10^{-12}$ cm³/s and $k_L = 185$ s⁻¹, whose results are shown by the solid curve of Fig. 4. We also fit the data by the approximate solution of Eq. (5). The result is very similar to the numerical curve. This good agreement indicates that the modeling seems to be reasonable.

The secondary chemical reactions are neglected in the above modeling, which requires some justifications. The reaction rate for the Cl and CH₃OH reaction is fast, so the time period for the complete consumption of Cl is very short. Thus, for an excess of CH₃OH, the destruction of secondary species (such as CH₂OH and HO₂) by Cl is not expected to be significant. This is evident by the fact that the loss rate k_L does not depend on [Cl] at high [CH₃OH] (see Fig. 6). The

FIG. 6. The loss rate k_L of CH₂OH as a function of the CH₃OH pressure. The He and Cl₂ pressures are 1.5 Torr and 13 mTorr, respectively.

destruction rate of HO₂ by the secondary species is expected to be low. CH₂OH is either lost on the walls or converted to HO₂ by reaction with O₂, so it does not have enough concentration to destroy HO₂ significantly. The rate for HO₂ selfreaction is expected to be small, because the [HO₂] is not larger than 10^{13} cm⁻³ in the flow tube. The rate constant¹⁵ for the HO₂ self-reaction is 1.7×10^{-12} cm³/s, the destruction rate is thus less than 17 s^{-1} . In a time scale of few ms, $k_{\omega} t < 1$, so the fraction of HO₂ destroyed by itself is small. This is supported by experimental observations that [HO₂] does not decrease significantly when the reaction distances vary from 4 to 18 cm. The secondary chemical reactions are therefore negligible in the modeling.

To further support the assertion that the modeling is not seriously affected by the secondary chemical reactions, we did measurements at a low [Cl₂] of about 1 mTorr ([Cl] $\sim 10^{12}$ cm⁻³). The reaction rate constant measured is consistent with the value measured at the high [Cl₂] of 13 mTorr. This strengthens our conclusion that the secondary reactions are not important in the modeling.

At the lower Cl₂ concentration, HO₂ was detected with the Kr resonance lamp at 123.6 nm. This resonance line has a higher sensitivity for the HO₂ detection. However, this line can also excite H₂O to produce $OH(A \rightarrow X)$ emission, so it is only applicable when H₂O is not present. For the current HO₂ production method, the H₂O concentration is not detectable, in contrast to the H + O₂ + M system that exists a high concentration of H₂O.¹¹

For the case of low [CH₃OH], the secondary chemical reactions become important, and modeling requires some modifications. Equation (4a) is still valid, but Eq. (4b) needs an additional term (-k [CH₂OH] [Cl] to account for the destruction of Cl by CH₂OH. However, this loss process may not seriously affect the Cl concentration, because CH₂OH is either quickly converted to HO₂ by O₂ or lost on the walls. Thus, Eq. (4b) may be approximately valid. The loss rate due to the Cl destruction of CH₂OH needs to be added to Eq. (4c). However, this additional loss could be made up by modifying the k_L value as shown in Fig. 6. The k_w value in Eq. (4d) should include the destruction of HO₂ by Cl. However, this additional loss rate may not be large, because [Cl] is almost consumed when HO₂ is formed. Thus,

FIG. 7. The OH($A \rightarrow X$) emission intensity as a function of the O₂ pressure. The He, Cl₂, and CH₃OH pressures are 1.5 Torr, 13 mTorr, and 1.26 mTorr, respectively. The solid line is fit by the numerical solutions of Eqs. (4a)-(4d) with $k_2 = 1.4 \times 10^{-12}$ cm³/s and $k_L = 280$ s⁻¹.

 $k_{\omega}t < 1$ still holds and k_{ω} is again negligible in the modeling. In summary, Eqs. (4a)–(4d) can be approximately applied for the low [CH₃OH] case except that k_L needs to be modified to compensate the loss rate due to the destruction of CH₂OH by Cl.

We have tested the low [CH₃OH] case using the data shown in Fig. 7, where the O₂ dependence of the emission intensity was taken at [CH₃OH] = 1.26 mTorr, [Cl₂] = 13 mTorr and [He] = 1.5 Torr. The solid curve of Fig. 7 is the numerical solution of Eqs. (4a)-(4d) with $k_2 = 1.4 \times 10^{-12}$ cm³/s and $k_L = 280$ s⁻¹. The numerical solutions show a very good fit to our data. The k_L value obtained is consistent with the measured loss rate shown in Fig. 6. The k_2 value is consistent with the value obtained for the case of high [CH₃OH]. This good agreement further supports that our modeling is reasonable.

The experimental uncertainities are estimated to be 15% for the $[O_2]_{1/2}$, 10% for the k_L , and 10% for the flow velocity measurements. The flow rate for the He carrier gas can be measured as accurately as 2%, but since the actual flow velocity of CH₂OH is not measure, the uncertainty may be larger than this value. The CH₂OH flow velocity is assumed to be equal to the carrier gas, because the [CH₂OH] is much lower than the carrier gas concentration. The overall experimental uncertainty is about 30%. The k_2 value is thus $(1.4 \pm 0.4) \times 10^{-12}$ cm³/s. The parameters used and obtained from this experiment are summarized in Table I.

The k_2 value obtained here agrees reasonably well with Radford's value¹³ of $(2^{+2}_{-1}) \times 10^{-12}$ cm³/s, in spite of the [CH₂OH] loss rates measured in these two experiments being quite different. The current experiment demonstrates that this new HO₂ detection method can be applied for measuring the reaction rate constants of HO₂ with various atmospheric species.

Table I. Values for experimental parameters.

Parameters	Value
He carrier gas	~1.5 Torr
Cl ₂ partial pressure	1-13 mTorr
CH ₃ OH partial pressure	0.4-9.5 mTorr
Initial Cl concentration (estimated)	$(0.1-1) \times 10^{13} \text{ cm}^{-3}$
Flow velocity	1050 cm/s
Reaction time	4-20 ms
k_1 for excess CH ₃ OH	185 s ⁻¹
Reaction rate constant for	
$CH_2OH + O_2 \rightarrow HO_2 + CH_2O$	$(1.4 + 0.4) \times 10^{-12} \text{ cm}^3/\text{s}$

ACKNOWLEDGMENTS

The authors wish to thank Dr. C. J. Howard at the NOAA Environmental Research Laboratory, Dr. M. C. Lin at the Naval Research Laboratory, Dr. M. T. Leu at the Jet Propulsion Laboratory, and F. Li, Dr. E. R. Manzanares, and Dr. J. B. Nee in our laboratory for useful suggestions and discussions. This material is based on the work supported by the National Science Foundation under Grant No. ATM-8205849.

- ¹P. J. Crutzen, J. Geophys. Res. 76, 7311 (1971).
- ²T. T. Paukert and H. S. Johnston, J. Chem. Phys. 56, 2824 (1972).
- ³C. J. Hochanadel, J. A. Ghormley, and P. J. Ogren, J. Chem. Phys. 56, 4426 (1972).
- ⁴H. E. Hunziker and H. R. Wendt, J. Chem. Phys. 60, 4622 (1974).
- ⁵Y. Beers and C. J. Howard, J. Chem. Phys. 63, 4212 (1975).
- ⁶C. Yamada, Y. Endo, and E. Hirota, J. Chem. Phys. 78, 4379 (1983).
- ⁷R. P. Tuckett, P. A. Freedman, and W. J. Jones, Mol. Phys. 37, 379 (1979).
- ⁸J. T. Hougen, H. E. Radford, K. M. Evenson, and C. J. Howard, J. Mol. Spectrosc. **56**, 210 (1975).
- ⁹L. C. Lee, H. Helm, and J. S. Chang, Chem. Phys. Lett. 81, 537 (1981).
- ¹⁰L. C. Lee, J. Chem. Phys. **76**, 4909 (1982).
- ¹¹M. Suto and L. C. Lee, J. Chem. Phys. 80, 195 (1984).
- ¹²J. V. Michael, D. F. Nava, W. A. Payne, and L. J. Stief, J. Chem. Phys. 70, 3652 (1979).
- ¹³H. E. Radford, Chem. Phys. Lett. 71, 195 (1980).
- ¹⁴L. I. Avramenko and R. V. Kolesnikova, Bull. Acad. Sci. USSR Div. Chem. Sci. 545 (1961).
- ¹⁵W. B. DeMore, M. J. Molina, R. T. Watson, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, and A. R. Ravishankara, *Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling* (JPL, Pasadena, 1981), No. 81–62.
- ¹⁶J. H. Seinfeld, F. Allario, W. R. Bandeen, W. L. Chameides, D. D. Davis, E. D. Hinkley, R. W. Stewart, NASA Reference Publication No. 1062, 1981.
- ¹⁷L. C. Lee and C. C. Chiang, J. Chem. Phys. 78, 688 (1983).
- ¹⁸K. Watanabe, M. Zelikoff, and E. C. Y. Inn, Air Force Cambridge Research Center Technical Report No. 53-23 1953.
- ¹⁹L. C. Lee, J. Chem. Phys. 72, 4334 (1980).
- ²⁰R. D. Hudson, Rev. Geophys. Space Phys. 9, 305 (1971).
- ²¹F. Kaufman, Prog. React. Kinet. 1, 1 (1961).