DOI: 10.1002/ejoc.201400077

Phosphane- and Amine-Catalyzed Ring-Opening Reactions of Cyclopropenones with Isatin Derivatives: Synthesis of Carboxylated 1*H*-Indoles and Multisubstituted 2*H*-Pyran-2-ones

Wen-Tao Zhao,^[a] Xiang-Ying Tang,^{*[b]} and Min Shi^{*[a,b]}

Keywords: Small ring systems / Organocatalysis / Ring opening reactions / Phosphanes / Amines

The phosphane- and amine-catalyzed ring-opening reactions of cyclopropenones with isatin derivatives give different reaction outcomes. Under phosphane catalysis, carboxylated 1H-indoles are afforded in good yields, and under amine catalysis, multisubstituted 2*H*-pyran-2-ones are provided in moderate yields. The mechanistic aspects of these reactions are discussed on the basis of control experiments.

Introduction

In 1959, the chemistry of cyclopropenone started as first reported independently by Breslow and Volpin.^[1] Since then, cyclopropenones have drawn great attention from organic chemists as a result of their unique structure and reactivity.^[2] According to the Hückel rule, cyclopropenones have a resonance form (aromatic cation) in which a negative charge lies on the oxygen atom, and the aromatic nature of the species makes the oxygen atom even more nucleophilic than other ordinary carbonyl compounds (Figure 1). Consequently, cyclopropenones are widely used as trapping agents for electrophiles;^[3] moreover, they have also emerged as a powerful means to activate alcohols, aldoximes, and primary amides by acting as organocatalysts.^[4] As α , β -unsaturated ketones, cyclopropenones are also treated as electrophiles in 1,2- and 1,4-nucleophilic addition reactions.^[5] Moreover, the strain on cyclopropenones allows them to easily take part in cycloaddition reactions owing to their high activity.^[6] Similar to other strained small ring molecules such as cyclopropenes, large ring strain^[7] is another factor attributing to the high reactivity of cyclopropenones, and their transformations such as ring opening^[8] and ring enlargement^[9] are frequently found in the literature. However, though intensively investigated, the reaction of cyclopropenones catalyzed by organocatalysts is quite challenging, and only very few examples have been reported.^[10] The

University of Science and Technology, 130 Mei Long Road, Shanghai 200237 China [b] State Key Laboratory of Organometallic Chemistry, Shanghai difficulty of such reactions relies on the high reactivity of cyclopropenones, which causes either dimerization or further undesired transformations with other reagents during the process of the reaction.

Figure 1. Aromatic stabilization of cyclopropenes.

In the context of our ongoing efforts to investigate the organocatalysis of diverse transformations of electrondeficient alkenes such as the Morita–Baylis–Hillman reaction^[11] and other related reactions,^[12] we attempted to find a new representative instead of acrylate derivatives, ketenes, or allenic esters. We envisaged that cyclopropenones would be a good alternative in such transformations. Herein, we wish to report the phosphane- and amine-catalyzed ringopening reactions of cyclopropenones with isatin derivatives, which provides a facile synthetic method to construct carboxylated 1H-indoles and multisubstituted 2H-pyran-2ones under mild conditions.

Results and Discussion

We started our investigation by optimizing the PPh₃-catalyzed nucleophilic addition of isatin derivative **2a** (Boc = *tert*-butoxycarbonyl) to cyclopropenone **1a**, and the results are shown in Table 1. Upon adding a solution of cyclopropenone **1a** (2 equiv.) to a mixture of **2a** and PPh₃ (20 mol-%) by using a syringe pump, all reactions proceeded smoothly in THF, CH₂Cl₂, MeCN, and toluene at 25 °C to deliver carboxylated 1*H*-indole **3a** in 82–93% yield

 [[]a] Key Laboratory for Advanced Materials and Institute of Fine Chemicals
 School of Chemistry & Molecular Engineering, East China

[[]b] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China E-mail: Mshi@mail.sioc.ac.cn

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201400077.

(Table 1, entries 1–4). MeCN proved to be the best solvent in this reaction, as it gave corresponding product 3a in 93%yield (Table 1, entry 3). The structure of analogue 3c was unambiguously determined by X-ray diffraction (Figure 2).^[13] Next, we studied the ratio of **1a/2a** by varying the loading of 1a. Increasing the ratio of 1a/2a to 2.5 or decreasing it to 1.5 or 1.0 impaired the production of 3a dramatically (Table 1, entries 5–7). The optimal ratio was 2:1. Examination of the temperature revealed that 3a was obtained in slightly lower yield at both 0 and 40 °C than at 25 °C (Table 1, entries 8 and 9). Upon adding 10 mol-% PPh₃, the yield of **3a** decreased to 80% (Table 1, entry 10). Moreover, if all the starting materials and catalyst were mixed together in one portion, the reaction became sluggish and 3a was delivered in only 24% yield; this suggests that cyclopropenone is very reactive to undergo a self-reaction or polymerization with the formation of complex product mixtures (Table 1, entry 11).

Table 1. Screening of the reaction conditions catalyzed by PPh₃.^[a]

Ph [~]	0 + 1 1a 2a	Ph PPh ₃ (20 mol- N Boc 4 Å MS,	%) t, 1 h	Ph O Ph
Entry	1a/2a	Solvent	<i>t</i> [°C]	3a, yield [%] ^[b]
1	2:1	THF	25	91
2	2:1	CH_2Cl_2	25	82
3	2:1	MeČN	25	93
4	2:1	toluene	25	91
5	1.5:1	MeCN	25	77
6	1:1	MeCN	25	21
7	2.5:1	MeCN	25	43
8	2:1	MeCN	0	87
9	2:1	MeCN	40	80
10 ^[c]	2:1	MeCN	25	80
11 ^[d]	2:1	MeCN	25	24

[a] Conditions (unless otherwise specified): **2a** (0.2 mmol), PPh₃ (20 mol-%), solvent (1.5 mL), molecular sieves (4 Å, 50 mg); **1a** (0.4 mmol in 1.5 mL solvent) was added by syringe pump over 30 min. [b] Yield of isolated product. [c] Loading of PPh₃: 10 mol-%. [d] **1a**, **1b**, and PPh₃ were added in one pot.

With the best reaction conditions in hand, we next turned our efforts to study the scope and limitations of this phosphane-catalyzed nucleophilic addition reaction (Table 2). By using **1a** as the model substrate, isatins **2** with different aryl substituents at the C3 position ($\mathbf{R} = \mathbf{H}$) were tested, and the corresponding carboxylated 1*H*-indoles **3a**–g were obtained in excellent yields without the observation of a significant electronic impact (Table 2, entries 1–7). As for substrates **2h** (5-F, $\mathbf{Ar}^2 = 4$ -FC₆H₄) and **2j** (5-MeO, $\mathbf{Ar}^2 = C_6\mathbf{H}_5$), the reactions also proceeded smoothly and delivered corresponding products **3h** and **3j** in 79 and 85% yield, respectively (Table 2, entries 8 and 10). Treatment of 3-naphthyl-substituted substrate **2i** under the standard reaction conditions gave desired product **3i** in 97% yield (Table 2, entry 9). Other cyclopropenones were also

Figure 2. ORTEP drawing of 3c.

ployed as substrates, such as **1b** ($Ar^1 = 4$ -MeC₆H₄) and **1c** ($Ar^1 = 4$ -FC₆H₄), which led to products **3k** and **3l** in 88% and 86% yield, respectively (Table 2, entries 11 and 12).

Table 2. Scope of the reaction catalyzed by PPh₃.^[a]

$ = \frac{5}{10} + R \frac{5}{10} + R \frac{5}{10} + R \frac{5}{10} + R \frac{3}{10} + R $	$ \begin{array}{c} & 2 \\ = 0 \\ c \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$Ar^2 O Ar^1$ $V O Ar^1$ Boc 3
1 , Ar ¹	2 , R/Ar ²	3, yield [%] ^[b]
1a, C ₆ H ₅	$2a, H/C_6H_5$	3a , 93
$1a, C_6H_5$	2b , H/2-MeC ₆ H ₄	3b , 97
1a, C ₆ H ₅	2c , $H/3-MeC_6H_4$	3c , 83
1a, C_6H_5	2d, H/4-MeC ₆ H ₄	3d , 93
1a, C_6H_5	2e , H/3,5-Me ₂ C ₆ H ₃	3e , 98
$1a, C_6H_5$	2f , H/4-FC ₆ H ₄	3f , 98
1a, C ₆ H ₅	2g , H/3-FC ₆ H ₄	3g , 96
$1a, C_6H_5$	2h , 5-F/4-FC ₆ H ₄	3h , 79
1a, C ₆ H ₅	2i , C ₁₀ H ₇	3i , 97
1a, C_6H_5	2j, 5-MeO/C ₆ H ₅	3 j, 85
1b , 4 -MeC ₆ H ₄	2a, H/C ₆ H ₅	3k , 88
1c, 4-FC ₆ H ₄	2a , H/C_6H_5	31 , 86
	$D + R \frac{5}{H_{0}} + \frac{4}{R_{0}} \frac{3}{R_{0}} + \frac{5}{R_{0}} \frac{4}{R_{0}} + \frac{3}{R_{0}} $	$\begin{array}{c} \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & Ar^2 \\ & & Ar^2 \\ & & \end{array} \end{array} \xrightarrow{\begin{array}{c} PPh_3 \\ & (20 \text{ mol}-\%) \\ & & Ar^2 \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} PPh_3 \\ & & \end{array} \\ & & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} PPh_3 \\ & & \end{array} \\ & & \begin{array}{c} & \end{array} \\ & & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & & \begin{array}{c} & \end{array} \\ & & \begin{array}{c} & \end{array} \\ & & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & & \end{array} \\ & & \begin{array}{c} & \end{array} \\ & & \end{array} \\ & \begin{array}{c} & \end{array} \\ & & \end{array} \\ & & \begin{array}{c} & \end{array} \\ & & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & & \end{array} \\ & & \begin{array}{c} & & \end{array} \\ & \begin{array}{c} & & \end{array} \\ & & \end{array} \\ & \begin{array}{c} & & \end{array} \\ & \end{array} \\ & \begin{array}{c} & & \end{array} \\ & \begin{array}{c} & & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \end{array} \\$

[a] Conditions (unless otherwise specified): **2a** (0.2 mmol), PPh₃ (20 mol-%), solvent (1.5 mL), molecular sieves (4 Å, 50 mg); **1a** (0.4 mmol in 1.5 mL solvent) was added by syringe pump over 30 min. [b] Yield of isolated product.

An explanation for the reaction sequence is depicted in Scheme 1 by using 1a and 2a as models. The 1,4-addition of PPh₃ with 1a gives zwitterionic intermediate A, which abstracts a proton from the enolate resonance structure of 2a to deliver enolate B and cationic intermediate C. Intermolecular nucleophilic addition of B and C produces zwitterionic intermediate D, which undergoes elimination to give the corresponding carboxylated 1*H*-indole 3a together with the regenerated PPh₃ catalyst.

SHORT COMMUNICATION

Scheme 1. Plausible mechanism for the reaction catalyzed by PPh₃.

In general, the nitrogen atom is more electronegative and more basic than the phosphorus atom. These two factors can majorly account for the differences between nitrogenand phosphane-containing organocatalysts. With respect to this aspect, we also attempted to investigate the catalytic behavior of nitrogen-containing catalysts (tertiary amines and pyridine) in the reaction of 1 with 2. To our delight, upon treating 1a and 2a in the presence of N,N-diisopropylethylamine (DIPEA, 20 mol-%) in THF for 1 h, new product 4a was obtained in 57% yield (Table 3, entry 1). Its structure was identified by X-ray diffraction of analogue 4d (Figure 3).^[14] The structure contains a 2*H*-pyran-2-one moiety, which is built at the 3-carbon of the indoline backbone. Other nitrogen-containing catalysts such as Et₃N, 1,8-diazabicyclo[5,4,0]-7-undecene (DBU), 4-N,N-dimethylpyridine (DMAP), and 1,4-diazabicyclo[2,2,2]octane (DABCO) all showed good catalytic activity in this reaction, but DABCO gave the best result and furnished 4a in 86% yield (Table 3, entries 2-5). Next, with the use of DABCO as the catalyst, a survey aimed at finding the optimal ratio of 1a/2a was conducted (Table 3, entries 6-10). The results indicated that the addition of 1.5 equiv. 1a by syringe pump to a mixture of 2a and DABCO in THF resulted in the highest yield (90%) of 4a (Table 3, entry 7). Solvent effects were then investigated. Changing the solvent to CH₂Cl₂, toluene, 1,4-dioxane, and DMF significantly reduced the yield of 4a (Table 3, entries 11-13 and 15). Notably, the use of MeCN produced 4a in 91% yield (Table 3, entry 14). However, the addition of 1a or 2a by syringe pump over 30 min decreased the yield of 4a significantly (Table 3, entries 16 and 17). Noteworthy is that a trace amount of byproduct 5a (an analogue of 5g shown in Figure 4), which could not be completely separated from 4a, was observed on the basis of the NMR spectroscopic data. Fortunately, after recrystallization, 4a was obtained in pure form, and the recrystallization yields are all indicated in Table 3.

Table 3. Screening of the reaction conditions catalyzed by amines.^[a]

	O Ph 1a	+ N 2a B	h catalyst (20 mol-%) ⇒O solvent, oc 4 Å MS, r.t., 1 h	Ph 0 0	Ph Ph N Boc
Entry	1a/2a	Catalyst	Solvent		Yield [%]
				isolated	after recrystalli-
				product	zation
1	2.5:1	DIPEA	THF	57	10
2	2.5:1	Et ₃ N	THF	82	19
3	2.5:1	DBU	THF	85	19
4	2.5:1	DMAP	THF	79	17
5	2.5:1	DABCO	THF	86	20
6	2:1	DABCO	THF	82	23
7	1.5:1	DABCO	THF	90	25
8	1:1	DABCO	THF	88	15
9	1:1.5	DABCO	THF	80	15
10	1:2	DABCO	THF	74	7
11	1.5:1	DABCO	CH_2Cl_2	53	10
12	1.5:1	DABCO	toluene	60	15
13	1.5:1	DABCO	1,4-dioxane	52	10
14	1.5:1	DABCO	MeCN	91	35
15	1.5:1	DABCO	DMF	73	9
16 ^[b]	1.5:1	DABCO	MeCN	61	20
17 ^[c]	1.5:1	DABCO	MeCN	29	8

[a] The reaction was performed on a 0.2 mmol scale (for 2a) in solvent (2 mL) at room temperature (25 °C). [b] 1a was added by syringe pump over 30 min. [c] 2a was added by syringe pump over 30 min.

Figure 3. ORTEP drawing of 4d.

To examine the substrate scope of this reaction, several isatin derivatives **2** with different aryl substituents Ar^2 were first investigated by using **1a** as a model substrate (Table 4). The Ar^2 substituents did not have a significant electronic or steric impact on this reaction, and corresponding products **4a**–**h** were afforded in good yields (Table 4, entries 1–8). As for substrates **2i** (R = 6-Br, $Ar^2 = C_6H_5$), **2j** (R = 5-MeO, $Ar^2 = C_6H_5$), and **2k** (R = 5-F, $Ar^2 = 4-FC_6H_4$), corresponding products **4i**, **4j**, and **4k** were also obtained in

Figure 4. The X-ray structure of 5g.

46, 80, and 67% yield, respectively (Table 4, entries 9–11). Next, by using **2a** as the model substrate, a variety of cyclopropenones **1** were investigated. Similar to the phosphanecatalyzed reaction, substituents with different electronic properties did not significantly affect the reaction outcome, and 2*H*-pyran-2-ones **4I–n** were furnished in 70–85% yield (Table 4, entries 12–14). In all cases, the yield of **4** after recrystallization is indicated in Table 4.

Table 4. Scope of the reaction catalyzed by DABCO.^[a]

[[]a] Conditions: 1 (0.75 mmol), 2 (0.5 mmol), DABCO (20 mol-%), molecular sieves (4 Å, 100 mg), MeCN (5 mL), 25 °C, 1 h.

Upon using 2g and 1a as substrates, the structure of byproduct 5g was identified by X-ray diffraction,^[15] which indicated that two molecules of isatin and one molecule of cyclopropenone were incorporated into the structure (Figure 4, also see the Supporting Information).

A plausible mechanism for the formation of **4** is proposed in Scheme 2 by using **1a** as a model. First, DABCO abstracts one proton from **2** to generate anionic species **A** (Nu⁻), which then initiates a 1,4-addition to the C=C bond of **1a** on the less sterically hindered side to furnish enolate intermediate **B**. Subsequent intermolecular nucleophilic addition of intermediate **B** to another molecule of **1a** takes place to give intermediate **C**. After a ring-opening process and intramolecular nucleophilic addition, intermediate **C** is transformed into cyclopropane-containing anionic intermediate **D** through a concerted manner, and it then undergoes another ring-opening process to generate intermediate **E**. After protonation, final product **4** is formed together with the regenerated catalyst.

Scheme 2. Plausible mechanism for the reaction catalyzed by amines.

Conclusions

In summary, we developed phosphane- and amine-catalyzed ring-opening reactions of cyclopropenones with isatin derivatives to afford carboxylated 1*H*-indoles and multisubstituted 2*H*-pyran-2-ones in moderate to excellent yields. These two products are the key intermediates in the synthesis of biologically active compounds.^[16] The methodology displayed broad substrate scope and functional group compatibility, and the desired products were obtained under very mild conditions. The unique activity of the cyclopropenones under the organocatalysis conditions was explicated by proposed mechanisms. Further investigations to examine the mechanistic details more extensively are underway in our laboratory.

Experimental Section

General Procedure for the Preparation of 3: A flame-dried Schlenk flask was charged with substrate 2 (0.2 mmol), PPh₃ (11 mg,

SHORT COMMUNICATION

0.04 mmol), and molecular sieves (4 Å, 50 mg). Then, dry MeCN (1.5 mL) was added. Compound 1 (0.4 mmol) in MeCN (1.5 mL) was added by syringe over 30 min. The reaction mixture was stirred at room temperature under an atmosphere of argon. Upon completion of the reaction, the mixture was evaporated under reduced pressure, and the residue was purified by silica gel flash column chromatography (petroleum/ethyl acetate, 20:1 v/v) to afford **3**.

General Procedure for the Preparation of 4: A flame-dried Schlenk flask was charged with substrate 1 (0.75 mmol), substrate 2 (0.5 mmol), DABCO (9 mg, 0.15 mmol), and molecular sieves (4 Å, 100 mg). Then, dry MeCN (1.5 mL) was added. The reaction mixture was stirred at room temperature under an atmosphere of argon. Upon completion of the reaction, the mixture was evaporated under reduced pressure, and the residue was purified by silica gel flash column chromatography (petroleum/ethyl acetate, 4:1 v/v) to afford a light yellow solid that was further purified by recrystallization (petroleum ether, with a few drops of dichloromethane).

Supporting Information (see footnote on the first page of this article): General experimental procedures; ¹³C NMR and ¹H NMR spectroscopic data and analytic data for **3** and **4**; and crystallographic details of **3c**, **4d**, and **5g**.

Acknowledgments

The authors thank the Shanghai Municipal Committee of Science and Technology (grant number 11JC1402600), the National Basic Research Program of China [grant number (973)-2010CB833302], the Fundamental Research Funds for the Central Universities, and the National Natural Science Foundation of China (NSFC) (grant numbers 21072206, 20472096, 21372241, 20672127, 21361140350, 21102166, 21121062, 21302203, and 20732008) for financial support.

- a) R. Breslow, R. Haynie, J. Mirra, J. Am. Chem. Soc. 1959, 81, 247; b) D. N. Kursanov, M. E. Volpin, Y. D. Koreshkov, Izv. Akad. Nauk SSSR 1959, 3, 560.
- For reviews, see: a) K. T. Potts, J. S. Baum, *Chem. Rev.* 1974, 74, 189; b) T. Eicher, J. L. Weber, *Top. Curr. Chem.* 1975, 57, 1; c) K. Komatsu, T. Kitagawa, *Chem. Rev.* 2003, 103, 1371.
- [3] a) O. Korner, R. Gleiter, F. Rominger, *Synthesis* 2009, 19, 3259; cyclopropenones are good precursors for the synthesis of cyclopropenylium ions having a heteroatom substituent, see: b) K. Kohler, W. E. Piers, *Can. J. Chem.* 1998, 76, 1249; c) K. Musigmann, H. Mayr, A. de Meijere, *Tetrahedron Lett.* 1990, 31, 1261.
- [4] a) B. D. Kelly, T. H. Lambert, Org. Lett. 2011, 13, 740; b) E. D. Nacsa, T. H. Lambert, Org. Lett. 2013, 15, 38; c) A. Rai, L. D. S. Yadav, Eur. J. Org. Chem. 2013, 1889; d) C. M. Vanos, T. H. Lambert, Angew. Chem. Int. Ed. 2011, 50, 12222; Angew. Chem. 2011, 123, 12430.
- [5] a) D. B. Werz, R. Gleiter, F. Rominger, *Eur. J. Org. Chem.* 2003, 151; b) P. A. O'Gorman, T. Chen, H. E. Cross, S. Naeem, A. Pitard, M. I. Qamar, K. Hemming, *Tetrahedron Lett.* 2008, 49, 6316.
- [6] P. A. Wender, T. J. Paxton, T. J. Williams, J. Am. Chem. Soc. 2006, 128, 14814.
- [7] a) A. Kascheres, A. C. Joussef, H. C. Duarte, *Tetrahedron Lett.* 1983, 24, 1837; b) Y. Tamura, K. Sumoto, J. Minamikawa, M. Ikeda, *Tetrahedron Lett.* 1972, 13, 4137.
- [8] a) R. Breslow, L. J. Altman, J. Am. Chem. Soc. **1966**, 88, 504; the carbon–carbon π bonds in cyclopropenones are known to

react with 1,3-dipoles and activated dienes to afford [3+2] and [4+2] cycloadducts, see: b) A. Kascheres, J. A. R. Rodrigues, R. Pilli, *Heterocycles* **1984**, *22*, 1709; c) R. Breslow, M. Oda, *J. Am. Chem. Soc.* **1972**, *94*, 4787; d) M. Oda, R. Breslow, *Tetrahedron Lett.* **1972**, *13*, 4419; e) C. A. Jacobs, W. P. Dailey, *J. Org. Chem.* **1995**, *60*, 7747; f) O. Tsuge, S. Okita, M. Noguchi, H. Watanabe, *Chem. Lett.* **1981**, 1439; g) C. Jenny, D. Obrecht, H. Heimgartner, *Tetrahedron Lett.* **1982**, *23*, 3059.

- [9] a) K. Hemming, M. N. Khan, V. V. R. Kondakal, A. Pitard, M. I. Qamar, C. R. Rice, Org. Lett. 2012, 14, 126; cyclopropenones can also be converted into acetylenes and carbon monoxide by photochemical and thermal-induced decarbonylation, see: b) K. T. Potts, J. S. Baum, Chem. Rev. 1974, 74, 189; c) Y. Chiang, A. J. Kresge, R. Hochstrasser, J. Wirz, J. Am. Chem. Soc. 1989, 111, 2355; d) B. D. Wagner, M. Z. Zgierski, J. Lusztyk, J. Am. Chem. Soc. 1994, 116, 6433; e) Y. Chiang, A. J. Kresge, V. V. Popik, J. Am. Chem. Soc. 1995, 117, 9165.
- [10] a) A. Hamada, T. Takizawa, Chem. Pharm. Bull. 1975, 23, 2933; b) N. Obata, T. Takizawa, Tetrahedron Lett. 1970, 11, 2231; c) S. Cunha, A. Kascheres, J. Braz. Chem. Soc. 2002, 13, 687.
- [11] a) M. Shi, Y.-M. Xu, Angew. Chem. Int. Ed. 2002, 41, 4507; Angew. Chem. 2002, 114, 4689; b) Y. Wei, M. Shi, Chem. Rev. 2013, 113, 6659; c) Y. Wei, M. Shi, Acc. Chem. Res. 2010, 43, 1005.
- [12] a) G.-L. Zhao, J.-W. Huang, M. Shi, Org. Lett. 2003, 5, 4737;
 b) Y.-L. Shi, M. Shi, Org. Lett. 2005, 7, 3057.
- [13] CCDC-969494 (for 3c) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. See also the Supporting Information.
- [14] CCDC-914709 (for 4d) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. See also the Supporting Information.
- [15] CCDC-931360 (for 5g) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. See also the Supporting Information.
- [16] Carboxylated 1H-indoles can be used in the synthesis of natural products or key intermediates, see: a) I. D. Hills, G. C. Fu, Angew. Chem. Int. Ed. 2003, 42, 3921; Angew. Chem. 2003, 115, 4051; b) C. L. Elizabeth, C. K. Marisa, J. Am. Chem. Soc. 2008, 130, 16162; c) C. Trung, C. L. Elizabeth, C. K. Marisa, J. Org. Chem. 2012, 77, 11034; 2H-pyran-2-ones featuring electron-deficient diene moieties are common precursors for [4+2] and [2+2] cycloadditions to construct bicyclic building blocks, see: d) K. C. Nicolaou, J. J. Liu, C.-K. Hwang, W.-M. Dai, R. K. Guy, J. Chem. Soc., Chem. Commun. 1992, 1118; e) K. C. Nicolaou, Z. Yang, J. J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Clalborne, J. Renaud, E. A. Couladouros, K. Paulvannan, E. J. Sorensen, Nature 1994, 367, 630; f) H. Okamura, H. Shimizu, Y. Nakamura, T. Iwagawa, M. Nakatani, Tetrahedron Lett. 2000, 41, 4147; g) H. Shimizu, H. Okamura, T. Iwagawa, M. Nakatani, Tetrahedron 2001, 57, 1903; h) P.S. Baran, N.Z. Burns, J. Am. Chem. Soc. 2006, 128, 3908; i) Y. Wang, H. M. Li, Y. Q. Wang, Y. Liu, B. M. Foxman, L. Deng, J. Am. Chem. Soc. 2007, 129, 6364; j) H. M. Nelson, K. Murakami, S. C. Virgil, B. M. Stoltz, Angew. Chem. Int. Ed. 2011, 50, 3688; Angew. Chem. 2011, 123, 3772; k) E. J. Corey, J. Streith, J. Am. Chem. Soc. 1964, 86, 950; 1) B. R. Arnold, C. E. Brown, J. Lusztyk, J. Am. Chem. Soc. 1993, 115, 1576.

Received: January 16, 2014 Published Online: March 12, 2014