Formation of Explosive Chlorine-Nitrogen Compounds during the Reaction of Ammonium Compounds with Chlorine

M. Knothe*

Freiberger NE-Metall GmbH, Lessingstrasse 41, 09599 Freiberg, Germany

W. Hasenpusch

Degussa, AG, Abteilung Umweltschutz, 60287 Frankfurt (Main), Germany

Received November 22, 1995

Introduction

It is known that during the reaction of chlorine or hypochloride with ammonium compounds chlorine amines of the composition $NH_{3-n}Cl_n$ (n = 0-3) may be formed as unstable intermediate compounds. Of them, NCl_3 is especially explosive.¹ The following systems are considered to be dangerous:² (i) amounts of ≥ 0.5 mL of liquid NCl_3 ; (ii) mixtures with ≥ 10 vol % of NCl_3 in inert solvents, e.g., chlorinated hydrocarbons; (iii) mixtures with ≥ 0.5 vol % of NCl_3 in the gas phases.

The literature data concerning the formation of NCl₃ during the reaction of NH₄Cl with chlorine

$$NH_4Cl + 3Cl_2 = NCl_3 + 4HCl$$
(1)

are dispersed and, in part, incomplete.²

This especially applies to the dependence of NCl₃ formation upon acidity. In the weakly acidic medium (pH 1–6) NCl₃ is rapidly formed at reaction yields from 30 up to 70%. At pH \geq 10 and $C_{\text{HCl}} > 6$ M, no NCl₃ is formed. As to the acidity range from 0.1 to 6 M there are not sufficient data.

For this range NCl₃ formation was studied with the use of higher NH₄Cl concentration and at different reaction temperatures.

Experimental Section

The experiments were performed with the use of 100-500 mL of solution. Because of the great influence of apparatus conditions on NCl₃ formation the dependence upon relevant experimental parameters was always determined with the same apparatus conditions. *In view of the tendency of NCl₃ to explode, the following precautions were taken:* assembly of the apparatus behind double glass shields; avoidance of critical phase composition by continuously agitating the reaction solution and passing an air flow through the free reaction space.

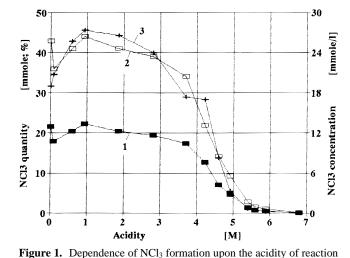
For a given time chlorine was passed through the reaction solution under intensive agitation with, at the same time, a given air flow maintained in the gas space. The chlorine stream was determined, and from that the chlorine quantity introduced into the system was calculated. The reaction gases were passed through a system of washing bottles. The fractions were processed after the completion of chlorination and a downtime of 5 min.

The quantities of NCl₃ passed from the reaction solution into the gas phase as well as the NCl₃ content in the reaction solution after the experiment had been finished were determined. The total NCl₃ quantity was given in millimoles of NCl₃ as well as in fractions of the added quantities of NH₄Cl and chlorine according to eq 1. In addition, the remaining NH₄Cl content in the reaction solution after the separation of NCl₃ was determined.

or nypornioines of the 1 as unstable cially exploe dangerous:² res with ≥10 ydrocarbons; s phases. NCl₃ during NCl₃ during of NCl₃ (a) from the reaction solution by extraction with CCl₄ followed by conversion with hydrochloric acid. The final determination of NCl₃ (a) from the reaction solution by extraction with CCl₄ followed by conversion with hydrochloric acid. The final determination of NH₄⁺ was performed photometrically.³ The detection limits for NCl₃ were in the gas phase 0.007 mmol and in the reaction solution 0.0035 mmol of NCl₃. The correctness of the value obtained was verified by

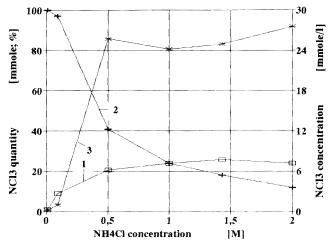
Results

solution in CCl₄.

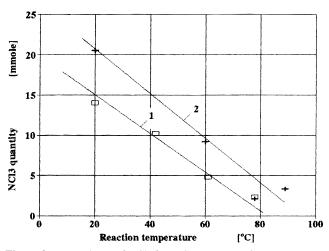

Preliminary tests have also shown that in clearly acidic solutions relevant quantities of NCl_3 have rapidly formed, being highly dependent on the apparatus conditions and, thereby, on the intensity of interaction between the chlorine and solution phases (during the reaction of 0.5 M NH₄Cl/0.5 M HCl solution with chlorine the yield varied between 30 and 65%). Under equal conditions the formed NCl_3 quantity increased nearly proportionally to the chlorine flow and, thereby, to the chlorine quantity introduced.

determining the blank value and by model tests using a 0.9 M NCl₃

Dependence of NCl₃ Formation upon the Acidity of Solution. Under constant conditions (using each time 0.1 L of 0.5 M NH₄Cl solution of different acidity, reaction temperature 20 °C, chlorination time 30 min, chlorine flow 8–9 L/h, and chlorine quantity added 180–206 mmol corresponding to 120– 137% according to eq 1) the dependence of NCl₃ formation upon the acidity was determined within the range from pH = 4.6 to 6.8 M. The results are shown in Figure 1.


Influence of NH_4^+ Concentration. Under constant conditions (using 0.1 L of 0.5 M HCl solution, reaction temperature 20 °C, chlorination time 30 min, chlorine flow 8.5 L/h, and chlorine quantity added 185 mmol) the NH_4Cl concentration varied from 0.01 to 2 M. The results are shown in Figure 2.

Influence of Reaction Temperature. Under constant conditions (using 0.1 L of 0.5 M NH₄Cl solution in 1.97 M HCl, chlorination time 30 min) at two different chlorination rates the reaction temperature was varied as follows. Series A: 5 L/h of Cl₂; chlorine quantity 113 mmol corresponding to 73% according to eq 1. Series B: 9.0 L/h of Cl₂; chlorine quantity 203 mmol corresponding to 132% of the theoretical value. The results are shown in Figure 3.



Gmelin, Handbuch der anorganischen Chemie; Verlag Chemie: Weinheim, Germany: (a) System No. 6, Chlorine (Hauptband, 1927; Ergänzungsband, 1969); (b) System No. 23, Ammonium, 1936.
Dokter, T. J. Hazard. Mater. 1985, 12, 207.

⁽³⁾ De Vries, T.; Savariar, C. P.; Chakrabartty, M. M. J. Am. Water Works Assoc. 1962, 54, 858.

Figure 2. Dependence of NCl₃ formation upon NH₄Cl concentration in the reaction solution: (Curve 1) NCl₃ quantity formed (mmol); (curve 2) NCl₃ quantity formed relative to the NH₄Cl quantity used (%); (curve 3) NCl₃ concentration in the reaction solution (mmol/L).

Figure 3. Dependence of NCl₃ formation upon reaction temperature: (Curve 1) chlorine quantity used, 73% of the theoretical value; (curve 2) chlorine quantity used, 132% of the theoretical value.

Time Dependence of the Formation and Decomposition Reactions of NCl₃. With the use of 0.5 M NH₄Cl solution in 0.5 M hydrochloric acid the formation rate of NCl₃ was studied for a period of 45 min. For that, samples were taken and analyzed from both the reaction solution and the absorption solution arranged behind that. After the chlorine flow had been shut off, agitating the chlorine-containing reaction solution and passing the carrier gas flow through the free reaction space were continued.

The results are given in Table 1. From that the following can be seen: (i) In the reaction solution a rapid formation of NCl₃ took place with the greater portion of NCl₃ (93–96%) initially remaining in the aqueous solution. (ii) After the chlorine flow had been shut off, the NCl₃ quantity in the reaction solution decreased. Of that, 77% was recovered in the absorption solution. (iii) Of the NCl₃ quantity removed subsequently from the reaction solution during 21 h, only 16% was recovered in the absorption solution.

Table 1. Dependence of Formation and Decomposition Reactionof NCl3 upon Time^a

	reacn solution		abs solution
time, min	$C_{\rm NCl_3}$, mmol/L	<i>n</i> _{NCl₃} , mmol	$n_{\rm NCl_3}$, mmol
Chlorination Reaction			
10	4.4	2.21	0.09
20	12.9	6.33	0.31
30	17.1	8.29	0.67
45	26.4	12.50	2.1
	Decomposit	ion Reaction	
15	22.9	10.50	n.b. ^c
30	12.9	5.71	n.b.
45	11.4	4.93	n.b.
60	8.1	3.41	n.b.
180	1.57	0.64	10.4
24 h	0.019	0.007	0.1^{b}

^{*a*} Quantity used: 0.5 L of 0.5 M NH₄Cl/0.5 M HCl. Specific chlorine flow: 5.4 L/(h·L of solution). ^{*b*} The absorption solution was changed. ^{*c*} No values.

Summary

By the reaction of chlorine with NH₄Cl solutions (investigated concentration range 0.01-2 M NH₄Cl), a rapid formation of NCl₃ took place. The acidities at which the formation of relevant NCl₃ quantities must be expected ranged from neutral values up to a hydrochloric acid concentration of about 5 M. Rising temperatures, indeed, diminished the NCl₃ formation; however, even at about 90 °C noticeable NCl₃ quantities were still formed. The behavior of NCl₃-containing systems was governed by the noticeable, but limited, solubility of the NCl₃ in aqueous solution and its relatively high vapor pressure and remarkable chemical stability against excessive NH₄Cl.

Therefore, during the formation stage the NCl_3 concentration in the reaction solution initially increased which is accompanied with a relatively low transition of the NCl_3 into the gas phase. Then, the NCl_3 concentration in the gas phase distinctly increases when the solubility limit of NCl_3 in the aqueous solution (about 17 mmol/L) is exceeded.

When the flow of chlorine had been shut off, the NCl₃ content in the reaction solution considerably decreases within some hours. The decrease is due, mainly, to the evaporation of NCl₃ and removal by the gas phase, whereas the reaction with water or NH₄Cl present in a large excess contributes only a little to this. The reaction resulting in stable compounds such as N₂ and NO₃⁻ became decisive only at low NCl₃ contents.

Safety Precautions

From the investigations it follows that during the reaction of NH₄Cl solutions with chlorine the quantity of NCl₃ formed as well as the NCl₃ concentrations in many cases pass beyond the limit of dangerous conditions.

In view of the explosion hazard caused already by small NCl_3 quantities,² all reactions in which chlorine and hypochloride, on the one hand, and amines, on the other, are taking part must be tested for the possibility of forming explosive chlorine amines.

IC951503M