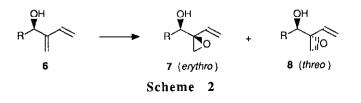

ENANTIO- AND STEREOCONTROLLED SYNTHESES OF BRANCHED-CHAIN SUGAR, L-ARCANOSE AND L-OLIVOMYCOSE BASED ON THE CHEMISTRY OF 1-TRIMETHYLSILYL-2,3-BUTADIENE


Susumi Hatakeyama, Kazutoshi Sugawara, and Seiichi Takano* Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

Summary: Branched-chain sugars, L-arcanose and L-olivomycose, have been synthesized in a completely enantio- and stereocontrolled manner starting from Lewis acid mediated reaction of 1-trimethylsilyl-2,3-butadiene with (S)-2-benzyloxy-propanal.

We have recently established an effective method for the preparation of either racemic or chiral alkyl(1,3-butadien-2-yl)methanol derivatives by use of Lewis acid mediated addition of 1-trimethylsilyl-2,3-butadiene to aldehydes or acetals.¹ For the purpose of exploring the synthetic utility of this method, we have this time been engaged in studies directed toward the enantio- and stereocontrolled synthesis of branched-chain sugars² based on a new strategy as outlined in Scheme 1. The crucial point of this strategy is whether these unprecedented transformations can be performed regio- and stereoselectively or not.

Initially, the mono-epoxidation was tested using three racemic dienols $6a \cdot c^1$ (Scheme 2). The results are given in Table 1.³ It can be seen that the vanadium catalyzed epoxidation⁴ proceeded with complete regio- and stereoselectivity to afford the *erythro* epoxy alcohol 7 exclusively and that the *m*CPBA epoxidation resulted in rather poor diastereoselection.

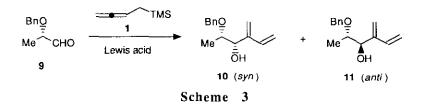

dienol 6			conditions	7 + 8	ratioc	
	<u>R</u>	methoda	temp. (°C)	time (h)	yield ^b (%)	7/8
(a) _	ph(CH ₂) ₂ -	A	-25	12	45	9/1
(a)	ph(CH ₂) ₂ -	В	0	4	85	>98/1
(b)	phCH ₂ -	В	0	8	73	>98/1
(c)	<i>c</i> -C ₆ H ₁₁	В	0	8	71	>98/1

Table 1. Monoepoxidation of Dienols

a) method A : the reaction was carried out in CH₂Cl₂ using mCPBA (1.2 eq.) and NaHCO₃ (3.6 eq.); method B : the reaction was carried out in CH₂Cl₂ using VO(acac)₂ (8 mol%), and ^tBuOOH (1.5 eq.). b) isolate yield. c) determined by ¹H NMR (500 MHz).

Having developed a method for the highly regio- and stereoselective transformation of dienols to *erythro* epoxy alcohols, we then started the synthesis of branched-chain sugars, L-arcanose $(17)^5$ and L-olivomycose $(23).^{6,7}$ Thus, (S)-2-benzyloxypropanal $(9)^8$ was allowed to react with 1-trimethylsilyl-2,3-butadiene (1) in the presence of Lewis acid under various conditions (Scheme 3). The results are summarized in Table 2.

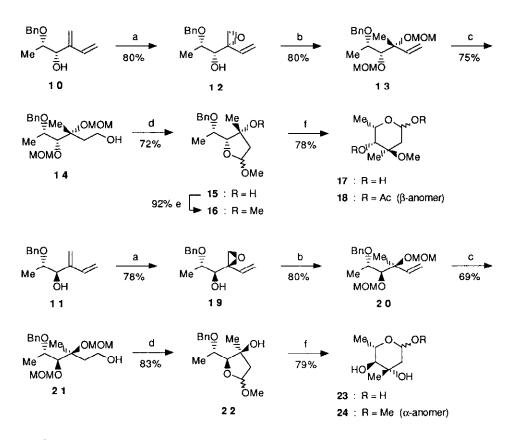

It suggests that in the cases of TiCl₄ and SnCl₄ the reaction predominantly proceeded via a chelated transition state, while the $BF_3 \cdot Et_2O$ mediated reaction took place via a non-chelated transition state. These stereochemical outcomes are exactly same as those observed in the reaction of allylsilanes.⁹

Table 2.	Lewis	Acid	Mediated	Addition	of	1-Trimethylsilyl-2,3-butadiene	to	(S)-2-
	Benzy	loxyp	ropanal					

	conditi	ions ^a	10 + 11	ratio ^c 10/1 1	
Lewis acid	temp. (°C)	time (h)	yield ^b (%)		
TiCl ₄	-78	12	77	>98/1	
TiCl ₄	90	12	61	>98/1	
SnCl ₄	-90	10	45	18/1	
BF3·Et2O	-78	24	79	1/3	
BF3·Et2O	-90	12	29	1/4	

a) the reaction was carried out in CH_2Cl_2 using Lewis acid (1.1 eq.) and 1 (2.0 eq.). b) isolated yield. c) determined by ¹H NMR (500 MHz).

Scheme 4. (a) $VO(acac)_2$ (catalyst), ¹BuOOH, CH_2Cl_2 , 0 °C; (b) (i) LiAlH4, THF, 0 °C, (ii) MeOCH₂Cl₁, ⁱPr₂NEt, CH_2Cl_2 , reflux; (c) thexylborane, THF, 0 °C then 3N NaOH, 30% H₂O₂, 0 °C; (d) (i) (COCl₂, DMSO, CH_2Cl_2 , -60 °C then Et₃N, 0 °C, (ii) *p*-TsOH·H₂O (catalyst), MeOH; (e) KH, MeI, THF; (f) (i) H₂, 10% Pd-C (catalyst), 0.2% HCIO₄-MeOH, (ii) 1N H₂SO₄-THF (1:1).

For the synthesis of L-arcanose (17), the syn dienol 10, $[\alpha]_D^{27} + 74.3^\circ$ (c 0.70, CHCl₃), was converted to the epoxy alcohol 12, $[\alpha]_D^{23} + 122.2^\circ$ (c 1.04, CHCl₃), in a completely diastereoselective manner¹⁰ by the vanadium catalyzed epoxidation. LAH reduction followed by methoxymethylation gave the olefin 13, $[\alpha]_D^{29} + 19.1^\circ$ (c 0.91, CHCl₃) which was then transformed into the primary alcohol 14, $[\alpha]_D^{28} + 23.2^\circ$ (c 0.92, CHCl₃), by hydroboration-oxidation. Upon sequential Swern oxidation, acetalization, and methylation, the methyl ether 16 was obtained as a 2:1 anomeric mixture. Without separation of the anomers, 16 was subjected to debenzylation and acid hydrolysis to furnish L-arcanose (17), mp 107.5~108.5 °C, $[\alpha]_D^{23} - 23.0^\circ$ (c 1.19, EtOH, equilibrated) (lit.¹¹ mp 96-98 °C, $[\alpha]_D - 20.9^\circ$ (c 4.56, EtOH, equilibrated). Further identity of the synthesis of 17 was established by the fact that 1,4-di-O-acetyl-arcanose (18), $[\alpha]_D^{29} - 31.6^\circ$ (c 1.21, EtOH), derived from 17 exhibited spectral properties (¹H NMR, IR) in accord with those reported.^{11,12}

4516

Similarly, the anti alcohol 11 was transformed into L-olivomycose (23) via 19, $[\alpha]_D^{28} +0.8^{\circ}$ (c 0.98, CHCl₃), 20, $[\alpha]_D^{26} +51.0^{\circ}$ (c 0.96, CHCl₃), 21, $[\alpha]_D^{27} +37.2^{\circ}$ (c 1.07, CHCl₃), and 22 (3:1 anomeric mixture). It is worthy of note that the vanadium catalyzed epoxidation of 11 took place also with excellent diastereoselectivity¹⁰ leading to exclusive formation of 19. The synthesis of 23, mp 104 °C, $[\alpha]^{29} -22.2^{\circ}$ (c 1.04, H₂O, equilibrated) (lit.^{7a} mp 102~103 °C, $[\alpha]_D -22.2^{\circ}$ (c 1.0, H₂O, equilibrated), was confirmed by converting 23 to methyl L- α -olivomycoside (24). The synthetic 24, $[\alpha]_D^{30} -150.8^{\circ}$ (c 1.40, EtOH) (lit.^{7d} $[\alpha]_D^{25} -145^{\circ}$ (EtOH)), showed spectral properties (¹H NMR, IR) in accord with those reported.^{7b}

References and Notes

- 1. See the preceding paper.
- For the synthesis of carbohydrates and other polyhydroxylated materials from acyclic precursors, see: In *Trends in Synthetic Carbohydrate Chemistry*; Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; ACS Symposium Series 386; Washington D. C., 1989.
- 3. All new isolated compounds reported herein exhibited satisfactory spectral (¹H NMR, IR) and HR (MS) or combustion analytical data.
- 4. Sharpless, K. B.; Verhoeven, T. R. Aldrichimica Acta 1979, 12, 63.
- L-Arcanose is present as its 4-acetate in the sugar moiety of lankamycin, a macrolide antibiotic. Keller-Schierlein, W.; Roncari, G. Helv. Chim. Acta 1964, 47, 78.
- L-Olivomycose is present as its 4-acetate and 4-isobutanoate in the trisaccharide moiety of several anti tumor antibiotics of the aureolic acid group such as olivomycin. Miyamoto, M.; Kawanatsu, Y.; Kawashima, K.; Tanaka, K.; Nakanishi, K. Tetrahedron 1967, 23, 421.
- For previous synthesis of L-olivomycose, see: (a) Williams, E. H.; Szarek, W. A.; Jones, J. K. N. Can. J. Chem. 1969, 47, 4467. (b) Thiem, J.; Elvers, J. Chem. Ber. 1979, 112, 818. (c) Fuganti, C.; Grasseli, P.; Marinoni, G. Tetrahedron Lett. 1979, 1161. (d) Giuliano, R. M. Carbohydr. Res. 1984, 131, 341.
- 8. Wuts, P. G. M.; Bigelow, S. S. J. Org. Chem. 1983, 48, 3489.
- (a) Reetz, M. T.; Kesseler, K. J. Org. Chem. 1985, 50, 5434.
 (b) Hatakeyama, S.; Sakurai, K.; Takano, S. Tetrahedron Lett. 1986, 27, 4485.
- 10. The corresponding *threo* isomer was not detected in the ¹H NMR (500 MIIz) spectrum of the reaction product.
- 11. Keller-Schierlein, W.; Roncari, G. Helv. Chim. Acta 1962, 45, 138.
- 12. ibidem, 1966, 49, 705.

(Received in Japan 25 April 1991)