Elektrophile N-Aminierung von 2-Aminophosphonsäureestern

Siegfried Andreae und Ernst Schmitz

Berlin, Institut für Angewandte Chemie

Eingegangen am 30. August 1993

Electrophilic N-Amination of 2-Aminophosphonic Esters

Über die den 2-Hydrazinocarbonsäure-Derivaten analogen 2-Hydrazinophosphonsäure-Derivate ist bisher wenig bekannt geworden. Die ersten Vertreter sind bisher ausschließlich über Anlagerungen von Dialkylphoshiten bzw. deren Natrium-Salzen an Aldehyd-azine hergestellt worden. Die Hydrierung der entstandenen Addukte ergibt unter N-N-Spaltung 2-Aminophosphonsäureester, die Hydrolyse liefert die entsprechenden 2-Hydrazinophosphonsäuren [1–2]. 1-Benzyloxycarbonyl-2-(diethylphosphono)-hydrazin soll gegenüber Chloracetanilid-Herbiziden Safenerwirkung zeigen [2].

Von Ketonen abgeleitete Hydrazinophosphonsäure-Derivate, d.h. ohne Wasserstoff in 2-Stellung, sind bisher nicht beschrieben worden.

Die aus Carbonylverbindungen, Ammoniak und Dialkylphosphiten leicht zugänglichen 2-Aminophosphonsäureester **1** [3] sollten als Ausgangsmaterialien für 2-Hydrazinophosphonsäure-Derivate einsetzbar sein. Bei der Umsetzung mit 1-Oxa-2-azaspiro[2.5]octan **2**, das sich bereits bei anderen elektrophilen N-Aminierungen bewährt hat [4], konnte eine N-N-Knüpfung eindeutig nachgewiesen werden. Die in vielen Fällen kristallin anfallenden 2-Cyclohexylidenhydrazinophosphonsäureester **3** sind jedoch nur begrenzte Zeit stabil. Die Ausbeuten an Rohprodukt betragen dabei ca. 60–70 %, wobei 17–35 % als erste kristalline Fraktion gewinnbar sind. Zur weiteren Charakterisierung wurden die Verbindungen **3** in die stabilen 4-Nitrobenzylidenhydrazinophosphonsäureester (**4**) überführt (siehe Tab. 1).

Die analytischen und spektralen Daten der neuen Verbindungen **3** und **4** sind in den Tab. 2 und 3 zusammengefaßt. Die NMR-Spektren bestätigen die Strukturen **3** und **4**. Charakteristisch sind die starken Kopplungen des C2-Atoms mit dem Phosphoratom $J_{P-C} = 140-149$ Hz (**3**: 140–144 Hz; **4**: 148–149 Hz). In **4c** und **4e** ist eine P-C-Fernkopplung zum Methin-Kohlenstoff von ca. 3 Hz erkennbar. Die ¹H-NMR-Spektren der Verbindungen **4** geben keine Anhaltspunkte für das Vorliegen von E/Z-Isomeren-Gemischen (jeweils ein scharfes Singulett für das Methin-Proton). Die Massenspektren zeigen neben einem intensitätsschwachen Molpeak nur wenige Bruchstücke. Dominierend ist die Abspaltung des Phosphono-Restes (M – P(O)(OR)₂ 100 % Intensität).

Leider gelang es bisher nicht, aus den Hydrazonen 3 die freien Hydrazinosäuren zu gewinnen. Beim Einsatz von

Tabelle 12-Cyclohexylidenhydrazino-...phosphonsäuredi...ester(3)und2-(4-Nitrobenzylidenhydrazino)-...phosphonsäuredi...ester(4)

Ver- bin- dung	R^1/R^2	R	Ausb. [%]	Fp. [°C]
3a	Mc/Me	Me	33 ^{a)}	133–115
3b	Me/Me	Et	17 ^{a)}	82-83
3c	Me/Et	Et	25 ^{a)}	44-55
3d	$-(CH_2)_{5}-$	Me	35 ^{a)}	103-105
3e	$-(CH_2)_5-$	Et	31 ^{a)}	84-86
4a	Me/Me	Me	67	168-169
4c	Me/Et	Et	52	122-123
4e	-(CH ₂) ₅ -	Et	61	162-164
4f	Ph/H	Et	65	158–159

^{a)} auskristallisierendes Produkt (Rohausbeute ca. 60–70%).

wässriger Salzsäure waren je nach Versuchsbedingungen die Hydrolysen unvollständig (Reste von OR-Signalen in den NMR-Spektren) bzw. führten zu Produktgemischen, die aus unterschiedlichen Anteilen von Hydrolyse-, C-P- und C-N-Spaltungsprodukten bestanden. Auch die milde Entalkylierung mit Hilfe von Trimethylsilylbromid führte nicht zum Er-

Ver- bin- dung	С	H [ber. %/gef. %]	Ν	Р	MS [m/z (rel. Intensität in %]	³¹ P-NMR [ppm]
3 a	50,37 49,98	8,84 8,90	10,68 10,41	11,81 11,95	262(1) 153(100), 110(12), 109(18), 96(34), 79(21), 58(18)	
3b	53,77 53,75	9,37 9,65	9,65 9,66	10,67 10,59	290(1), 153(100), 137(10), 96(38), 65(18), 58(33), 42(21), 41(19)	
3c	55,24 55,04	9,60 9,92	9,21 8,91	$10,18 \\ 10,48$	304(1), 167(100), 96(22), 81(16), 72(14)	
3d	55,61 55,26	9,00 9,19	9,27 9,20	10,25 10,22	302(2), 193(100), 110(17), 109(10), 98(37), 96(20), 70(33), 54(16)	+33,4
3e	58,16 58,04	9,46 9,66	8,48 8,41	9,38 9,45	330(2), 194(14), 193(100), 98(45), 96(16), 81(14)	+31,1
4 a	45,72 45,88	5,75 5,68	13,33 13,18	9,82 9,72	315(6), 207(17), 206(100), 151(10), 79(10)	+31,6
4c	50,42 50,49	6,77 6,95	11,76 11,76	8,67 8,93	357(8), 221(16), 220(100), 151(18), 149(15), 103(10)	+28,9
4e	53,26 53,32	6,84 6,99	10,96 11,01	8,08 8,08	383(3), 247(16), 246(100), 151(18),	+27,9
4f	55,24 55,35	5,67 5,65	10,74 10,73	7,91 7,85	391(7), 255(14), 254(100), 172(15), 104(23), 91(30), 79(17), 77(22)	+20,8

 Tabelle 2 Elementaranalysen, Massenspektren und ³¹P-NMR-Daten der Verbindungen 3 und 4

Tabelle 3 ¹³C-NMR- (1. Zeile) und ¹H-NMR-Daten (2. Zeile) der Verbindungen 3 und 4^{a)}

Ver.	R^1/R^2	C–P	NH	C=N	Cyclo C2/C6	hexyliden-Sys C3/C5	stem C4	R
3a	22,5 1,42(3)	56,3(144)	- 5,2br.m	152,8 -	35,4/26,9 2,2m, 4H	25,8/25,6 1,6m, 6	25,2 H	52,5(7) 3,70(10), 6H
3b	22,5 1,40(3)	56,1(144) -	– 5,1br.m	152,6	35,4/26,9 2,2m, 4H	25,8/25,5 1,6m, 6	25,2 H	61,9/61,8; 16,5/16,6 1,32t und 1,29t, 6H; 4,09m, 4H
3d	29,2/20,2 20,3/25,6*b) 1,1–2,3m, 20H	59,2(140) -	_ 4,44(4)	151,9 -	35,5/27,1 siehe R ¹ /J	25,9*/25,7* R ²	25,1*	52,5(7) 3,66(10), 6H
3e	28,4/19,7 19,8/25,2* ^{b)} 1,1–2,3m, 20H	57,7(141) -	_ 5,34(4)	148,3 	34,9/26,8 siehe R ¹ /I	25,4/25,4 ^{c)} R ²	24,7*	60,8/60,7; 16,3/16,4 1,20t, 6H; 3,93q, 4H
					4-N C1 C2	itrophenyl-Re /C6 C3/C5	est C4	
4 a	22,5 1,52(4)	56,8(149) -	- 6,15s	135,5s 7,56s	141,9 124 7,6	4,0 126,0 5 AB 8,18	147,0	53,1(7) 3,73(2), 6H
4c 4e	7,1(7), 27,4(4); 16,5(6) 1,00t, 1,7–2,2m; 1,49(16) 28,8/20,2/20,0/25,4 1,2–2,4m, 10H	59,5(148) 59,3(148) -	– 6,2br.m – 6,1br.m	134,4(3) 7,67s 133,3(3) 7,69s	142,2 124 7,6 142,7 124 7,6	4,0 125,9 4 AB 8,17 4,0 125,7 4 AB 8,16	146,8 146,7	62,1/62,2; 16,5/16,6 1,28t, 6H; 4,08m, 4H 62,2/62,1; 16,5/16,6 1,25t, 6H; 4,05m, 4H
4f	134,9(-)/128,0(6)/ 128,3(3)/128,8(2) ^{d)} 7,2-7,5m, 5H	60,9(149) 4,96dd(22)	– 6,8br.m	135,4s 7,58s	141,7 123 7,5	3,9 126,2 6 AB 8,12	147,0	63,3(7)/63,2(7); 16,2(6)/16,4(6) 4,14m, 2H und 3,7-4,0m, 2H; 1,31t, 3H und 1,13t, 3H

^{a)} chemische Verschiebungen in ppm (Kopplungskonstante mit Phosphoratom, ohne Multiplizitätsangabe: Dublett), * Zuordnung unsicher, ^{b)} Signalreihenfolge: C2 C6/C3 C5/C4; ^{c)} 2 Signale; ^{d)} Signalreihenfolge: C1/C2 C6/C3 C5/C4.

folg. So wurde z.B. in dem Fall $R^1, R^2, R=$ Me die stickstofffreie 2-Hydroxypropanphosphonsäure **5** in praktisch quantitativer Ausbeute isoliert [5].

Beschreibung der Versuche

Schmp.: Heiztischmikroskop (unkorr.). – ¹H-NMR: $CDCl_3/TMS$, 300 MHz. – ¹³C-NMR: $CDCl_3/HMDS$, 75 MHz. – ³¹P-NMR: $CDCl_3/ext$. Phosphorsäure, 32 MHz. – Analysen: Carlo Erba CHN-Analyzer Mod. 1106.- MS: 70 eV, direkt, ca. 170 °C.

2-Cyclohexylidenhydrazino-...phosphonsäuredi...ester (3)

(Allgemeine Arbeitsvorschrift):

3 mmol des entsprechenden 2-Aminophosphonsäuredialkylesters 1 werden in einer 5 mmol enthaltenden Lösung des Oxaziridins 2 in Toluol [6] bei ca. 85 °C gerührt, bis dünnschichtchromatographisch ein weitgehender Umsatz des Ausgangsesters 1 festgestellt wird. Dazu sind 3–5 h notwendig (sollten noch größere Mengen von 1 vorhanden sein, kann nochmals mit 2 mmol 2 in Toluol erwärmt werden.). Es wird im Vakuum vom Lösungsmittel und von flüchtigen Anteilen befreit. Aus dem Rückstand, der ca. 60–70 % der Theorie an dem entsprechenden Zielprodukt 3 enthält, kristallisieren innerhalb von 1–2 Tagen 17–35 % (siehe Tab. 1). Umkristallisation aus n-Heptan oder Petrolether ergibt analysenreine Produkte (Analysenwerte und spektrale Daten siehe Tab. 2–3). Die Verbindungen 3 sind einige Tage bis Wochen stabil.

2-(4-Nitrobenzylidenhydrazino)-...phosphonsäuredi...ester (4)

(Allgemeine Arbeitsvorschrift):

Die nach der obigen Vorschrift beendete Umsetzung von 1 und 2 wird bei 40–50 °C viermal mit je 3 ml 1 N HCl extrahiert. Die vereinigten wässrigen Phasen werden mit Toluol gewaschen und mit einer gesättigten Lösung von 2,5 mmol 4-Nitrobenzaldehyd in Ethanol geschüttelt. Das ausfallende Hydrazon 4 (Ausbeuten siche Tab. 1) wird aus Ethanol/DMF (10:1) und etwas Wasser umkristallisiert (Analysenwerte und spektrale Daten siehe Tab. 2 – 3). Die Herstellung kann natürlich auch durch analoges Behandeln der rohen oder kristallisierten Verbindungen 3 mit 4-Nitrobenzaldehyd/wässr. Salzsäure/Ethanol erfolgen.

2-Hydroxypropan-2-phosphonsäure (5)

Versuch zur Hydrolyse von **3a** [5]; 0,4 g 2,6 mmol Trimethylsilylbromid werden zu 0,23 g (0,88 mmol) **3a** gegeben, wobei eine leichte Erwärmung eintritt. Nach 5 h werden 2 ml Wasser zugesetzt, nach 0,5 h Stehen wird die Reaktionslösung im Vakuum eingedampft. Der Rückstand kristallisiert langsam und wird aus Acetonitril umkristallisiert; Ausb. 0,095 g (93 %), Fp. 165–170 °C (Lit. [7] Fp. 167–169 °C; Elementaranalyse und Massenspektrum ergaben die für **5** erwarteten Werte.).

Literatur

- M. Hoffmann, Cz. Wasielewski, J. Rachon, Chimia **30** (1976) 187; J. Rachon, Cz. Wasielewski, Rocz. Chem.
 50 (1976) 477, Chem. Abstr. **85** (1976) 108708f; J. Rachon, Cz. Wasielewski, Pol. 91,914/15.12.1977, Chem. Abstr. **90** (1979) P87663y; J. Rachon, Cz. Wasielewski, Pol. 92,285/15.12.1997, Chem. Abstr. **89** (1978) P43785q/ Chem. Abstr. **90** (1979) P104119v; J. Rachon, Cz. Wasielewski, Tetrahedron Lett. **1978**, 1609
- [2] P. H. Diel, L. Meier, Phosphorous and Sulfur 36 (1988) 85
- [3] W. Kochmann, E. Günther, Th. Röthling. Z. Chem. 16 (1976) 184
- [4] F. Szurdoki, S. Andreae, E. Baitz-Gácz, J. Tamas, K. Valkó, E. Schmitz, Cs. Szántay, Synthesis 1988, 529; S. Andreae, E. Schmitz, Synthesis 1991, 327
- [5] J. Gloede, pers. Mitteilung, Berlin 1993
- [6] E. Schmitz, R. Ohme, Chem. Ber. 97 (1964) 2521
- [7] J. B. Conant, A. D. McDonald, A. McB. Kinney, J. Am. Chem. Soc. 43 (1921) 1928

Korrespondenzadresse:

Dr. habil. Siegfried Andreae Institut für Angewandte Chemie Adlershof Rudower Chaussee 5 D-12484 Berlin-Adlershof