Carbon-13 NMR Study of (20,24)-Epoxydammarane Triterpenes

Cosme G. Francisco, Raimundo Freire, Rosendo Hernández, José A. Salazar and Ernesto Suárez*

Instituto de Productos Naturales Orgánicos, C.S.I.C., La Laguna, Tenerife, Spain

Manuel Cortés

Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile

Assignments of the ¹³C NMR signals of the dammarane triterpenes, 3β ,25,30-trihydroxy-(20R,24*R*)-epoxydammaran-16-one 3,30-diacetate (trevoagenin A diacetate) (2), its 20S-isomer (trevoagenin B diacetate) (3) and their related (20R)- 3β ,30-diacetoxy-16-oxo-25,26,27-trisnordammarane-24,20-lactone (4) and its 20Sisomer (5) have been achieved. Suitable tetrahydrofuran models have been synthesized in order to aid the ¹³C NMR assignments of the side-chain carbons of the above-mentioned compounds. The remarkable chemical shift differences observed for C-21 and C-22 between each pair of the C-20 epimers (2, 3 and 4, 5) allowed the confirmation of the C-20 stereochemistry of these ocotillol-type dammarane triterpenes.

INTRODUCTION

The ¹³C NMR chemical shifts of triterpenoids with the dammarane skeleton have been described¹⁻⁴ and this technique has proved valuable for structural elucidation of this type of natural product. However, the ¹³C NMR spectra of (20,24)-epoxydammarane triterpenes of the ocotillol type have received less attention and only chemical shifts for the 20S series have been reported.²⁻⁴ In this paper we describe a ¹³C NMR study on the dammarane triterpenes, in particular the acetates of trevoagenin A (2) and B (3) isolated from Trevoa trinervis⁵ (Rhamnaceae) and their oxidation products, lactones 4 and 5, respectively. As compounds 2 and 4 have 20R stereochemistry and compounds 3 and 5 show 20S stereochemistry some remarkable differences exist between the ¹³C NMR chemical shifts of the two series of stereoisomers. In this paper we show the usefulness of this technique in the establishment of the stereochemistry at C-20, which is difficult to determine by other spectroscopic and chemical procedures.

RESULTS AND DISCUSSION

The carbon resonances of compounds **2–5** were assigned as shown in Table 1 and were deduced from the proton-noise decoupled and off-resonance decoupled spectra. Assignments for carbons 1–12 and the methyl groups 18, 19, 28 and 29 are closely related with those of several dammarane^{3,4} and 3β -acetyl derivatives of ursane and oleane⁶ triterpenes. The triols obtained by hydrolysis of **2–5** give rise to complex ¹³C NMR spectra as a consequence of the equilibrium between the 16-oxo-30-ol and its hemiketal form, e.g. the C-16

* Author to whom correspondence should be addressed.

resonance of alcohol **1** appears at δ 216.4 (C-16 carbonyl) and simultaneously at δ 109.4 (C-16 hemiketal).

In order to assign the values corresponding to the side-chain carbons we synthesized *trans*- and *cis*-linalool oxide, **6** and **7**, respectively, and *trans*- and *cis*-2-phenyl-2-methyl-5-(2-hydroxyisopropyl)tetra-hydrofuran, **10** and **11**, respectively, and 2-phenyl-pentane-5,2-lactone (**12**). Compounds **6** and **7** were

Table 1.	Carbon-13 triterpenes	chemical 2–5	shift	data	of	damma	ane
Carbon	2	3		4		5	
1	38.5	38.4	45	38.5		38.4	5
2	23.6	23.0	3	23.6		23.6	
3	80.6	80.9	5	80.5		80.5	
4	37.9	37.9	Э	38.0		37.9	
5	55.8	55.8	3	55.8		55.8	
6	18.2	18.2	2	18.2		18.2	
7	35.85	5 35.9	9	35.8		35.7	
8	40.7	40.6	6	40.8		40.6	
9	51.6	51.6	6	51.4		51.4	
10	37.5	37.	5	37.5		37.5	
11	21.25	5 21.5	5	21.1	5	21.3	
12	25.8	25.4	1	25.9		26.5	
13	42.2	41.9	9	42.0		42.0	
14	47.6	47.7	7	47.7	5	47.6	
15	43.8	44.6	3	43.7		44.1	
16	216.4	216.4	1	214.4		214.3	
17	57.45	56.8	3	58.0	5	57.4	
18	16.5ª	16.5	5 ^a	16.5	5 ^a	16.4	a
19	16.4ª	16.5	5 ^a	16.4	a	16.5	a
20	84.5	84.6	5	87.05	5	87.0	
21	22.7	25.4	1	21.75	5	27.3	
22	38.5	34.3	3	34.59	5	30.3	
23	26.2	26.9	•	28.0		28.5	
24	85.3	84.1	l i	176.2		176.1	
25	70.7	71.!	5				
26	24.3	24.8	3				
27	27.4	27.2	25				
28	27.9	27.9)	28.0		27.9	5
29	16.7ª	16.7	7a	16.9	3	16.9	а
30	64.4	65.0)	64.3		64.6	
OCOCH ₃	21.25	21.2	2	21.1	5	21.3	
OCOCH ₃	20.9	20.9	•	20.8	5	20.8	
OCOCH ₃	170.8	170.7	75	170.4		170.8	
OCOCH ₃	170.7	170.6	6	170.5		170.4	
^a Assignn	nents may be	e reversed.					_

prepared by the previously described⁷ oxidation of linalool with monoperphthalic acid. The trans- and cis-tetrahydrofuran derivatives 10 and 11 and lactone 12 were synthesized from the commercially available 6-methylhept-5-en-2-one (8) through the reaction sequence shown in Scheme 1 (see Experimental). The establishment of the relative stereochemistry on C-2 and C-5 of compounds 10 and 11 was accomplished by the study of the ¹H NMR spectra with the aid of a lanthanide shift reagent. Figure 1 shows the relationship between the magnitude of the induced shift for the 1-Me and the amount of added $Eu(fod)_3$. As expected, the 1-Me group in 10 (cis relationship between the dimethylcarbinol at C-5 and the methyl group at C-2) experiences a higher rate of deshielding than that in its isomer, 11.

The assignment of the ¹³C NMR chemical shifts of **6-12** are shown in Table 2. Selective deuteriation (see Experimental) of carbons 1 and 3 in compounds **8-12** was also used as an assignment aid. The signals of the methylene and the methyl group in compounds **10–12** that are absent from the spectra of the corresponding 1,1,1,3,3-pentadeuteriated compounds are assigned to C-3 and C-1, respectively. Quaternary carbons 2 and 6 are easily assigned by comparing the spectra of **10** and **11** with **12**. Special mention should be made of the

Scheme 1. Reagents: i, PhMgBr; ii, perbenzoic acid; iii, Jones's reagent. Although one enantiomer is shown, both compounds 10 and 11 are racernic.

difference between the chemical shifts $(ca \ 3 \text{ ppm})$ of the two methyl groups of the isopropyl carbinol in **6**, **7**, **10** and **11**. This can only be explained in terms of a strong hydrogen bond between the tertiary hydroxyl group and the tetrahydrofuran oxygen, resulting in one methyl group being shielded by the presence of

Figure 1. Lanthanide-induced shift for 1-Me in the ¹H NMR spectra of compounds 10 and 11.

Table 2. Carbon-13 chemical shift data of compounds 6-12							
Carbon	6	7	8	9	10	11	12
1	26.9	26 .05	29 .55	30.4	30.6	29.4	29.4
2	83.05	82.8	207.95	74.9	84.7	84.55	86.95
3	37.5	38.0	43.45	43.85	39.65	39.0	36.2
4	26.4	26.5	22.45	23.0	26.5	26.3	28.95
5	85.6	85.6	122.8	124.3	85.5	85.2	177.1
6	71.1	71.2	132.25	132.0	71.1	71.5	
7	27.2	27.4	25.4	25.7	27.3	27.2	
8	24.3	24.4	17.4	17.6	24.3	24.6	
1′	143.8	144.4		148.0	148.3	148.3	144.4
2′	111.3	111.5		124.85	124.6	124.5	124.1
3′				128.1	128.2	128.25	128.6
4′				126.5	126.4	126.5	127.65

two γ -gauche interactions with C-4 and the oxygen atom of the tetrahydrofuran ring. As expected,⁸ no significant differences were observed between the chemical shifts of each pair of *trans* and *cis* isomers, **6-7** and **10-11**.

The side-chain and D-ring carbon atoms of the triterpenes 2 and 3 and the trisnor-lactones 4 and 5 (Table 1) were assigned on the basis of the chemical shift data shown in Table 2. As with 6, 7, 10 and 11, the isopropyl carbinol methyl groups C-26 and C-27 in the acetates of trevoagenins A and B, 2 and 3, respectively, show different chemical shifts (*ca* 3 ppm). In this case (24*R* configuration) the *pro-S*-methyl group at C-25 absorbs at higher field than the 25-*pro-R*-methyl group; this could be of interest in biosynthetic investigations in this type of dammarane triterpene. Previously reported⁴ assignments of ¹³C NMR chemical shifts of these methyl groups in several (20,24)-epoxydammarane triterpenes should be revised on this basis.

Carbon-23 in 2 and 3 absorbs at higher field than C-22 (12.3 and 7.4 ppm, respectively) as a consequence of two γ -gauche interactions with the methyl groups at C-25 and another upfield shift⁹ associated with the anti-periplanar hydroxyl group at C-25. A similar situation is observed for C-4 and C-3 in 6, 7, 10 and 11. The variations observed between the chemical shifts of the carbons adjacent to C-17 and C-20 in each pair of the C-20 epimers are shown in Table 3. The chemical shift differences observed for C-21 and C-22 can only be explained if the rotation around the C-17-C-20 bond is restrained to the conformations indicated in Fig. 2 for the two isomers. This allowed us to distinguish between the C-20 epimers of this type of dammarane triterpene; the C-21 methyl group resonance in the 20R series is more shielded than that of the corresponding 20S series, while the C-22 signal is more deshielded in the 20R series than that of its counterpart. It should be noted that the conformation indicated for trevoagenin A (20R) in Fig. 2 is also supported by x-ray crystallographic analysis⁵ of **1**. A similar situation is observed³ for 12β , 20-dihydroxydammaranes such as **A** (Fig. 3), where the rotation around the C-17-C-20 linkage is restricted by strong hydrogen bonding between the hydroxyl groups at C-12 and C-20. Determination of the C-20 stereochemistry of these ocotillol-type dammarane triterpenes is difficult to achieve by IR, ¹H NMR, mass spectrometry and chemical methods, hence the importance of ¹³C NMR spectroscopy in the resolution of this problem.

EXPERIMENTAL

The ¹³C NMR spectra were recorded on a Varian CFT-20 NMR spectrometer operating at 20.1 MHz in

Table 3.	Carbon-1 (20R) an	l3 cher nd (20S	nical shi) epimer:	ifts diffe s	rences	between
(20R)-(20S)	C-13	C-16	C-17	C-20	C-21	C-22
2-3 4-5	+0.3 0.0	0.0 +0.1	+0.65 +0.65	-0.1 +0.05	-2.7 -5.55	+ 4.2 + 4.25

Figure 2. Conformation around the C-17—C-20 linkage of 20*R* compounds 2 and 4, and their 20*S* epimers 3 and 5.

the FT mode. The compounds were submitted to proton-noise decoupling and single-frequency offresonance decoupling (SFORD) by offsetting the ¹H decoupler frequency by ca 6 ppm upfield of TMS to establish the carbon shifts and degree of protonation. The quaternary carbons were exclusively observed by setting the ¹H decoupler frequency ca 15 ppm upfield from TMS, with a noise band width of 500 Hz. The samples were recorded in 5 mm o.d. tubes using $CDCl_3$ as solvent as well as internal lock signal. All solutions were 0.1-0.2 M in concentration. The chemical shifts reported are in δ (ppm) downfield from internal TMS. The spectra were recorded over 5000 Hz (4000 Hz for **6–12**), a pulse width of $12 \,\mu s$ and 8K data points. ¹H NMR spectra were recorded with a Perkin-Elmer R-12B (60 MHz) or R-32 (90 MHz) instrument in CDCl₃ with TMS as internal reference. IR spectra were measured on a Perkin-Elmer 402 spectrophotometer. Mass spectra were recorded with a Hewlett-Packard 5930A instrument. Thin-layer chromatography (TLC) was performed on Merck silica gel (0.063-0.2 mm), the spray reagents being iodine or vanillin (1 g)-H₂SO₄ (160 ml)-EtOH (40 ml).

Trevoagenin A 3,30-diacetate (2) and trevoagenin B 3,30-diacetate (3), isolated from *Trevoa trinervis* Miers (Rhamnaceae), and the trisnor-lactones 4 and 5, prepared by Jones's oxidation of 2 and 3, respectively, have been described previously.⁵

Trans- and *cis*-linalool oxides **6** and **7** were prepared according to a previously reported method.⁷

Treatment of 6-methylhept-5-en-2-one (8) with phenylmagnesium bromide

To a cold $(-20 \,^{\circ}\text{C})$ solution of **8** (12.6 g, 0.1 M) in diethyl ether (40 ml) was added dropwise, under nitrogen, phenylmagnesium bromide (0.15 M) in diethyl ether (60 ml). After stirring for 3 h at room temperature, aqueous NH₄Cl was added to the reaction mixture, which was then extracted with diethyl ether. The organic phase was washed with water, dried (Na₂SO₄) and concentrated under reduced pressure, and the

Figure 3. Partial structure of A.

crude material was purified by distillation to give **9** (12.2 g, 60%), b.p. 70 °C (0.1 mmHg) [lit.,¹⁰ b.p. 155-156 °C, (19 mmHg)]; ν_{max} . (film) 3360, 3080, 3050, 3020, 1590, 760 and 705 cm⁻¹; $\delta_{\rm H}$ 1.46 (3H, br s, $W_{1/2}$ 4 Hz, trans-6-Me), 1.50 (3H, s, 2-Me), 1.62 (3H, br s, $W_{1/2}$ 4 Hz, cis-6-Me), 5.1 (1H, m, $W_{1/2}$ 13 Hz, H-5) and 7.3 (5H, m, $W_{1/2}$ 20 Hz, Ph).

Oxidation of 9 with perbenzoic acid

To a cold (0 °C) solution of the olefin **9** (10 g) in chloroform (250 ml) was added perbenzoic acid (13.5 g) in chloroform (150 ml), and the reaction mixture was kept at this temperature for 5 h. The mixture was poured into ice-water, and the organic phase was washed with aqueous sodium carbonate and water, dried (Na₂SO₄) and concentrated under reduced pressure. Column chromatography [benzene-ethyl acetate (90:10) as eluant] of the crude material gave *trans*-2-phenyl-2-methyl-5-(1-hydroxyisopropyl)tetrahydro-furan (**10**) (3.5 g) and *cis*-2-phenyl-2-methyl-5-(1-hydroxyisopropyl)tetrahydrofuran (**11**) (4 g).

Compound **10** had b.p. 80 °C (0.15 mmHg); m/z220 (1%, M^+), 205 (2%, M^+ -Me), 187 (3%, M^+ -Me-H₂O), 162 (14%), 161 (9%), 143 (20%, M^+ -Ph), 119 (100%); ν_{max} (film) 3560, 3440, 3080, 3040, 3020, 765 and 700 cm⁻¹; δ_{H} 1.17, 1.29 (2×3H, s, 6-Me₂), 1.50 (3H, s, 2-Me), 3.81 (1H, t, J 7 Hz, H-5) and 7.3 (5H, m, $W_{1/2}$ 20 Hz, Ph).

Compound **11** had b.p. 75 °C (0.15 mmHg); m/z 220 (1%, M^+), 205 (2%, M^+ -Me), 187 (3%, M^+ -Me-H₂O), 162 (14%), 161 (7%), 143 (20%, M^+ -Ph), 119 (100%); ν_{max} (film) 3540, 3440, 3075, 3040, 3010, 765 and 700 cm⁻¹; δ_{H} 1.13, 1.28 (2×3H, s, 6-Me₂), 1.49 (3H, s, 2-Me), 3.98 (1H, t, *J* 7 Hz, H-5) and 7.3 (5H, m, $W_{1/2}$ 20 Hz, Ph).

Oxidation of 11 with Jones's reagent

Compound **11** (1 g) in acetone (60 ml) was treated at 0 °C with excess of Jones's reagent. The usual work-up gave 2-phenylpentane-5,2-lactone (γ -phenyl- γ -valerolactone) (**12**) (0.48 g), b.p. 80 °C (0.15 mmHg) [lit.,¹¹ b.p. 123 °C (1 mmHg)]; $\delta_{\rm H}$ 1.71 (3H, s, 2-Me), 2.5 (4H, m, $W_{1/2}$ 9 Hz, H-3 and H-4), 7.32 (5H, br s, $W_{1/2}$ 5 Hz, Ph).

6-Methylhept-5-en-2-one- $1, 1, 1, 3, 3^{-2}H_5$ (8- d_5)

Clean sodium (0.3 g) was allowed to react with CH₃OD (10 ml). Deuterium oxide (10 ml) and the ketone **8** (0.2 g) were added to this solution, and the mixture was refluxed for 3 h. After cooling, the reaction mixture was diluted with diethyl ether, and the organic phase washed with water and dried over sodium sulphate. Evaporation of the solvent gave **8**- d_5 with percentages of deuteriated species (mass spectrometry) as follows: d_1 (1%), d_2 (7%), d_3 (22%), d_4 (35%) and d_5 (35%); $\delta_{\rm H}$ 1.64 (3H, br s, *trans*-6-Me), 1.68 (3H, br s, *cis*-6-Me), 5.0 (1H, m, $W_{1/2}$ 18 Hz, H-5); $\delta_{\rm C}$ 211.0 (C-2), 132.7 (C-6), 122.85 (C-5), 25.7 (C-7), 22.5 (C-4), and 17.6 (C-8).

Trans- and cis-2-phenyl-2-methyl-5-(1-hydroxyisopropyl)tetrahydrofuran-1,1,1,3,3- ${}^{2}H_{5}$ (10- d_{5} and 11- d_{5} , respectively)

These compounds were obtained from $8-d_5$ in the same way as 10 and 11 were prepared from 8.

Compound **10**- d_5 , δ_H 1.17, 1.29 (2×3H, s, 6-Me₂), 3.81 (1H, t, J 7 Hz, H-5), 7.35 (5H, m, $W_{1/2}$ 20 Hz, Ph); δ_C 148.3 (C-1'), 128.2 (C-3'), 126.4 (C-4'), 124.6 (C-2'), 85.55 (C-5), 84.5 (C-2), 71.1 (C-6), 27.3 (C-7), 26.3 (C-4) and 24.3 (C-8).

Compound **11**- d_5 , δ_H 1.13, 1.28 (2×3H, s, 6-Me₂), 3.99 (1H, t, J 7 Hz, H-5), 7.4 (5H, m, $W_{1/2}$ 20 Hz, Ph); δ_C 148.3 (C-1'), 128.25 (C-3'), 126.5 (C-4'), 124.5 (C-2'), 85.2 (C-5), 71.6 (C-6), 27.2 (C-7), 26.2 (C-4) and 24.6 (C-8).

2-Phenylpentane-5,2-lactone-1,1,1,3,3-²H₅ (12-d₅)

This compound was obtained from **11**- d_5 as previously described for the preparation of lactone **12** from compound **11**. Compound **12**- d_5 , $\delta_{\rm H}$ 2.44 (2H, m, $W_{1/2}$ 6 Hz, H-4), 7.4 (5H, br s, $W_{1/2}$ 5 Hz, Ph); $\delta_{\rm C}$ 144.4 (C-1'), 128.6 (C-3'), 127.6 (C-4'), 124.1 (C-2'), 86.9 (C-2) and 28.8 (C-4).

Acknowledgement

Part of this work was supported by the Investigation Programme of the Comisión Asesora de Investigación Científica y Técnica.

REFERENCES

- N. I. Uvarova, G. V. Malinovskaya and G. B. Elyakov, Tetrahedron Lett. 4617 (1976); P. M. Baker, E. J. L. Barreiro and B. Gilbert, Phytochemistry 15, 785 (1976); Y. Kimura, Y. Kobayashi, T. Takeda and Y. Ogihara, J. Chem. Soc., Perkin Trans. 1 1923 (1981); Y. Kobayashi, T. Takeda and Y. Ogihara, J. Chem. Soc. Perkin Trans. 1 2795 (1982); C. G. Francisco, R. Freire, R. Hernández, J. A. Salazar, E. Suárez and M. Cortés, J. Chem. Soc., Perkin Trans. 1 in press.
- G. V. Malinovskaya, N. D. Pokhili, V. V. Isakov and N. I. Uvarova, *Khim. Prir. Soedin.* 52 (1978).
- J. Asakawa, R. Kasai, K. Yamasaki and O. Tanaka, Tetrahedron 33, 1935 (1977).
- 4. O. Tanaka and S. Yahara, Phytochemistry 17, 1353 (1978).

- 5. C. Betancor, R. Freire, R. Hernández, E. Suárez and M. Cortés, J. Chem. Soc., Perkin Trans. 1 1119 (1983).
- K. Tori, S. Seo, A. Shimaoka and Y. Tomita, Tetrahedron Lett. 4227 (1974); S. Seo, Y. Tomita and K. Tori, Tetrahedron Lett. 7 (1975); G. S. Ricca, B. Danieli, G. Palmisano, H. Duddeck and M. H. A. Elgamal, Org. Magn. Reson. 11, 163 (1978).
- D. Felix, A. Melera, J. Seibl and E. Kováts, *Helv. Chim. Acta* 46, 1513 (1963).
- 8. A. S. Perlin, 'Application of Carbon-13 N.M.R. to Problems of Stereochemistry', in *Isotopes in Organic Chemistry*, edited by E. Buncel and C. C. Lee, Vol. 3, p. 183. Elsevier, Amsterdam (1977).

- 9. E. L. Eliel, W. F. Bailey, L. D. Kopp, R. L. Willer, D. M. Grant, R. Bertrand, K. A. Christensen, D. K. Dalling, M. W. Duch, E. Wenkert, F. M. Schell and D. W. Cochran, J. Am. Chem. Soc. **97**, 322 (1975).
- 10. R. Escourrou, Bull. Soc. Chim. Fr. 39, 1121 (1926).
- 11. J. Kenyon and M. C. R. Symons, J. Chem. Soc. 3580 (1953).
- Received 30 April 1983; accepted (revised) 2 July 1983