Reactions of permethylmetallocene alkyne complexes of titanium and zirconium with tris(perfluorophenyl)borane

Vladimir V. Burlakov,^a Paul-Michael Pellny,^b Perdita Arndt,^b Wolfgang Baumann,^b Anke Spannenberg,^b Vladimir B. Shur*^a and Uwe Rosenthal*^b

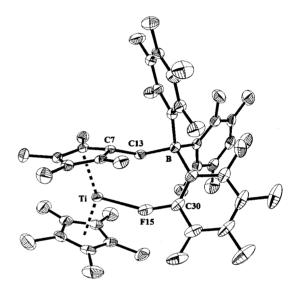
- ^a A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, 117813, Moscow, Russia
- ^b Institut für Organische Katalyseforschung an der Universität Rostock, Buchbinderstr. 5 6, D-18055 Rostock, Germany

Received (in Cambridge, UK) 20th October 1999, Accepted 11th January 2000

Functionalization of the pentamethylcyclopentadienyl ligands by an electrophilic substitution of hydrogen atoms by $[B(C_6F_5)_3]$ is observed at the Cp^* ligands of the alkyne complexes $[Cp^*_2M(\eta^2\text{-Ph}C_2SiMe_3]]$, connnected with (M=Ti, formation of 1) or without (M=Zr, formation of 2) loss of the alkyne and molecular hydrogen.

Recently we have published the reaction of the bis(trimethylsilyl)acetylene complex of titanocene $[Cp_2Ti(\eta^2\text{-}Me_3SiC_2\text{-}SiMe_3)]^1$ with $[HNMe_3][BPh_4]$ giving cationic complexes of the type $[Cp_2TiL_2][BPh_4]$ with L=THF and pyridine. 2 More recently we have found that in the interaction of $[Cp_2Ti(\eta^2\text{-}Me_3SiC_2SiMe_3)]$ with $[B(C_6F_5)_3]$ an electrophilic substitution of a hydrogen atom in one of the $\eta^5\text{-}C_5H_5$ rings takes place, and the paramagnetic zwitterionic titanium complex $[(\eta^5\text{-}C_5H_5)Ti\{\eta^5\text{-}C_5H_4B(C_6F_5)_3\}]$ is formed together with liberation of dihydrogen. 3 In this complex the ortho-fluorine atoms of two perfluorphenyl groups coordinate at the titanium centre.

Such an interaction but with only one perfluorphenyl group was described previously in the reaction product of the zirconacyclopentadiene [Cp₂Zr(C₄Me₄)] with [B(C₆F₅)₃] giving [(η^5 -C₅H₅)Zr{ σ -C(Me)=C(Me)-C(Me)=CHMe}{ η^5 -C₅H₄B(C₆F₅)₃}].⁴ Starting from the alkyne complex [Cp₂Zr(PMe₃)(η^2 -EtC₂Et)] and [HB(C₆F₅)₂] the alkenyl complex [(η^5 -C₅H₅)Zr{ σ -C(Et)=CHEt}{ η^5 -C₅H₄BH(C₆F₅)₂}] was obtained in which the hydrogen of the B–H groups coordinate at the Zr centre.⁵


Also, the so-called 'tuck in' permethylmetallocene complexes⁵ were obtained with $[B(C_6F_5)_3]$ and $[HB(C_6F_5)_2]$. Some aspects of these compounds were reviewed by Piers in 1998.⁵

Here, we report the different reactions of the permethylmetallocene alkyne complexes $[Cp^*_2M(\eta^2\text{-Ph}C_2SiMe_3)]$ (M = Ti^6 and Zr^7) with $[B(C_6F_5)_3]$, leading to functionalization of the pentamethylcyclopentadienyl ligand.

The compound $[(\eta^5-C_5Me_5)Ti\{\eta^5-C_5Me_4CH_2B(C_6F_5)_3\}]$ 1 is formed by dissociation of the alkyne and an electrophilic substitution of a hydrogen atom in one methyl group of the Cp* ligand together with liberation of dihydrogen (Scheme 1).†

The composition of the Ti(III) complex 1 was verified by elemental analysis; and crystallography.

The X-ray crystal structure analysis of 1\\$ (Fig. 1) revealed a bent permethyltitanocene which consists of one unsubstituted and one substituted pentamethylcyclopentadienyl ligand. In this complex the *ortho*-fluorine atom of only one of the per-

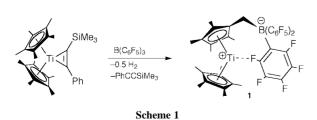
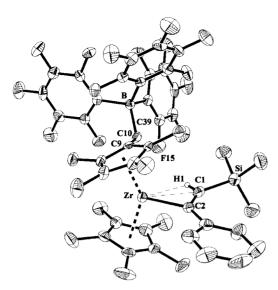


Fig. 1 Crystal structure of **1** at the 30% probability level for thermal ellipsoids. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Ti–F15 2.406(3), C30–F15 1.391(5), C7–C13 1.514(5), C13–B 1.649(6); B–C13–C7 124.8(3).

fluorphenyl groups coordinates at the titanium centre [Ti–F152.406(3) Å]. This is longer than found in $[(\eta^5-C_5H_5)Ti\{\eta^5-C_5H_4B(C_6F_5)_3\}]^3$ (2.248, 2.223 Å).


The alkenyl compound $[(\eta^5-C_5Me_5)Zr\{C(Ph)=CH(Si-Me_3)\}\{\eta^5-C_5Me_4CH_2B(C_6F_5)_3\}]$ **2** is formed also by an electrophilic substitution of a hydrogen atom in one methyl group of the Cp* ligand but without dissociation of the alkyne and liberation of dihydrogen (Scheme 2).¶

The composition of the diamagnetic complex 2 was verified by elemental analysis and crystallography. For solubility reasons, NMR investigations had to be carried out in THF- d_8 , but some undefined changes prevented a full analysis of the spectra. However, the borane attack at one methyl group is evident from a strong line broadening of both the $^1\mathrm{H}$ and $^{13}\mathrm{C}$ methylene signals (diastereotopic protons at 2.65 and 2.81 ppm). The chemical shifts for the vinyl group, a strong deshielding for the α carbon atom (228.9 ppm) and an upfield

$$\begin{array}{c} \bigoplus \\ B(C_6F_5)_3 \\ \\ Z_1 \\ \\ Ph \end{array}$$

Scheme 2

Fig. 2 Crystal structure of **2** at the 30% probability level for thermal ellipsoids. Hydrogen atoms except H1 are omitted for clarity. Selected bond lengths (Å) and angles (°): Zr–C1 2.518(6), Zr–C2 2.238(5), C9–C10 1.487(6), C10–B 1.694(6), Zr–H1 2.250, Zr–F15 4.744, C39–F15 1.369(5); C1–C2–Zr 86.5(4), B–C10–C9 121.6(4).

shift with a small coupling constant $^1J_{CH}$ (104.9 ppm, 111 Hz) for the β position, are characteristic for a ' β -CH agostic' structure⁸ although the deshielding of the proton is not as pronounced for complex 2 as was found for other zirconium cyclopentadienyl compounds with this structural feature, 8,10b,12

The X-ray crystal structure analysis of **2**§ (Fig. 2) revealed, similarly as found also for complex **1**, a bent permethylmetallocene which consists also of one unsubstituted and one substituted pentamethylcyclopentadienyl ligand, but no fluorine atom coordinates at the zirconium centre [shortest distance Zr–F15 4.744 Å]. Additionally an alkenyl group is σ -bonded with an agostic interaction⁸ to the zirconium atom presenting the typical small angle Zr–C2–C1 of 86.5° for such a type of bonding. In complexes **1** and **2** an identically functionalized Cp* ligand [η^5 -C₅Me₄CH₂B(C₆F₅)₃] is shown. Owing to the additional interaction in **1** the angle B–C13–C7 of 124.8(3)° is larger compared to the corresponding angle B–C10–C9 of 121.6(4)° in **2**.

The reactions of the corresponding complexes of bis-(trimethylsilyl) acetylene [$Cp^*_2M(\eta^2\text{-}Me_3SiC_2SiMe_3)$] ($M=Ti^6$ and Zr^9) gave with [$B(C_6F_5)_3$] only oils or such solids which could not be purified by crystallisation.

The novelty of the reactions in this work is, in contrast to former observed *inter*molecular reactions for titanium^{7b,10} and zirconium^{7b,11} an *intra*molecular course *via* C–H activation for the formation of 1 and 2. In the *inter*- and the *intra*molecular reactions the higher stability of the Ti(III) oxidation state as well as the larger zirconium atom can give an explanation for the different types of reaction: elimination or addition of the reacting substrate or group.

The work was supported by the Max-Planck-Gesellschaft, the Fonds der Chemischen Industrie and the Russian Foundation for Basic Research (Project code 99-03-33008).

Notes and references

 \dagger General procedure for the preparation of complex 1: 0.507 g (0.990 mmol) of [B(C₆F₅)₃] was dissolved in 10 mL of toluene and added to 0.474 g (0.962 mmol) of [Cp*₂Ti($\eta^2\text{-PhC}_2\text{SiMe}_3$)].⁶ The yellow–brown solution was filtered. After standing for 2 days at room temperature 0.123 g (15.4%) of yellow–brown crystals of 1 were formed which were separated from the mother-liquor, washed with cooled toluene and dried in vacuo; mp 141–143 °C (decomp.).

- ‡ *Data* for **1**: elemental analysis for $C_{38}H_{29}$ TiBF₁₅ (M=829.31). Calc.: C, 55.04; H, 3.52. Found: C, 55.02; H, 3.59%. NMR: As expected for Ti(III), no NMR signals (^{1}H and ^{13}C) could be obtained from solutions of **1** in THF
- § *X-Ray structure analysis* of **1** and **2**: STOE-IPDS diffractometer, graphite monochromated Mo-Kα radiation, solution of structures by direct methods (SHELXS-86: G. M. Sheldrick, *Acta. Crystallogr., Sect. A*, 1990, **46**, 467), refinement with full matrix least square techniques against *F*² (SHELXL-93: G. M. Sheldrick, University of Göttingen, Germany, 1993).

1: monoclinic, space group C2/c, a = 37.705(8), b = 10.990(2), c = 18.178(4) Å; $\beta = 106.48(3)^\circ$; V = 7223(3) Å³, Z = 8, $D_c = 1.525$ g cm⁻³; 10465 reflections measured, 5758 were symmetry independent and 2868 were observed $[I > 2\sigma(I)]$, R = 0.052, wR^2 (all data) = 0.116, 496 parameters.

2: monoclinic, space group $P2_1/c$; a = 12.827(3), b = 18.862(4), c = 19.499(4) Å, $\beta = 94.26(3)^{\circ}$; V = 4704.6(18) Å³, Z = 4, $D_c = 1.480$ g cm⁻³; 13886 reflections measured, 7099 were symmetry independent and 3131 were observed $[I > 2\sigma(I)]$, R = 0.045, wR^2 (all data) = 0.074, 608 parameters. CCDC 182/1520. See http://www.rsc.org/suppdata/cc/a9/a908591b/ for crystallographic files in .cif format.

¶ General procedure for the preparation of complex 2: 0.368 g (0.719 mmol) of $[B(C_6F_5)_3]$ was dissolved in 15 mL of toluene and added to 0.370 g (0.690 mmol) of $[Cp^*_2Zr(\eta^2-PhC_2SiMe_3)]$. The green solution was filtered. After standing for one day at room temperature red crystals deposited which were separated from the mother liquor, washed with cooled toluene and dried *in vacuo* to give 0.684 g (94.6%) of 2; mp 176–178 °C (decomp.).

 \parallel *Data* for **2**: elemental analysis for C₄₉H₄₄SiBZrF₁₅ (M=1047.98). Calc.: C, 56.16; H, 4.23. Found: C, 55.99; H, 4.24%. 1 H NMR (THF- d_8 , 297 K): δ 0.07 (s, 9H, SiMe₃); 1.30, 1.51, 1.64, 1.80 (4 s, 3H each, Cp-Me); 1.95 (s, 15H, Cp*); 2.65, 2.81 (br, 1H each, BCH₂); 4.49 (s, 1H, CH); 7.14 (2H, o-Ph); 7.19 (1H, p-Ph); 7.34 (2H, m-Ph). 13 C NMR (THF- d_8 , 297 K, not all signals unambiguously identified): δ 1.2 (SiMe₃); 12.2, 12.4, 12.6, 12.7 (Cp-Me); 12.7 (Cp*); 22.9 (br, BCH₂); 104.9 (CH); 123.7 (Cp*); 126.6 (o-Ph); 126.8 (p-Ph); 128.7 (m-Ph); 228.9 (Zr-C).

- (a) V. V. Burlakov, U. Rosenthal, P. V. Petrowsky, V. B. Shur and M. E. Vol'pin, *Metalloorg. Khim.*, 1988, 1, 953; *Organomet. Chem. USSR*, 1988, 1, 526; (b) V. V. Burlakov, A. V. Polyakov, A. I. Yanovsky, Yu. T. Struchkov, V. B. Shur, M. E. Vol'pin, U. Rosenthal and H. Görls, *J. Organomet. Chem.*, 1994, 476, 197.
- 2 (a) A. Ohff, R. Kempe, W. Baumann and U. Rosenthal, J. Organomet. Chem., 1996, 520, 241; (b) W. Ahlers, B. Temme, G. Erker, R. Fröhlich and F. Zippel, Organometallics, 1997, 16, 1440.
- 3 (a) V. V. Burlakov, S. I. Troyanov, A. V. Letov, E. I. Mysov, G. G. Furin and V. B. Shur, *Izv. Akad. Nauk, Ser. Khim.*, 1999, 1022; *Russ. Chem. Bull.*, 1999, **48**, 1012, (*Engl. Transl.*); (b) V. V. Burlakov, S. I. Troyanov, L. I. Strunkina, M. Kh. Minacheva, A. V. Letov, G. G. Furin, U. Rosenthal and V. B. Shur, *J. Organomet. Chem.*, 2000, in press.
- 4 J. Ruwwe, G. Erker and R. Fröhlich, Angew. Chem., 1996, 108, Angew. Chem., Int. Ed. Engl., 1996, 35, 80.
- 5 W. E. Piers, Chem. Eur. J., 1998, 4, 13; and references therein.
- 6 (a) V. V. Burlakov, U. Rosenthal, R. Beckhaus, A. W. Polyakov, Yu. T. Struchkov, G. Oehme, V. B. Shur and M. E. Vol'pin, *Metalloorg. Khim.*, 1990, 3, 476; *Organomet. Chem. USSR*, 1990, 3, 237; (b) U. Rosenthal, H. Görls, V. V. Burlakov, V. B. Shur and M. E. Vol'pin, *J. Organomet. Chem.*, 1992, 426, 53.
- 7 (a) A. K. List, K. Koo, A. L. Rheingold and G. L. Hillhouse, *Inorg. Chim Acta*, 1998, **270**, 399; (b) P.-M. Pellny, V. V. Burlakov, W. Baumann, A. Spannenberg and U. Rosenthal, *Z. Anorg. Allg. Chem.*, 1999, **625**, 910.
- 8 I. Hyla-Kryspin, R. Gleiter, C. Krüger, R. Zwettler and G. Erker, Organometallics, 1990, 9, 517 and references therein.
- 9 J. Hiller, U. Thewalt, M. Polasek, L. Petrusova, V. Varga, P. Sedmera and K. Mach, *Organometallics*, 1996, 15, 3752.
- 10 (a) C. Lefeber, A. Ohff, A. Tillack, W. Baumann, R. Kempe, V. V. Burlakov, U. Rosenthal and H. Görls, J. Organomet. Chem., 1995, 501, 179; (b) P. Arndt, C. Lefeber, R. Kempe, A. Tillack and U. Rosenthal, Chem. Ber., 1996, 129, 1281.
- 11 C. Lefeber, A. Ohff, A. Tillack, W. Baumann, R. Kempe, V. V. Burlakov and U. Rosenthal, J. Organomet. Chem., 1995, 501, 189.
- 12 (a) U. Rosenthal, A. Ohff, M. Michalik, H. Görls, V. V. Burlakov and V. B. Shur, Angew. Chem., 1993, 105, 1228; (b) D. Thomas, N. Peulecke, V. V. Burlakov, B. Heller, W. Baumann, A. Spannenberg, R. Kempe, U. Rosenthal and R. Beckhaus, Z. Anorg. Allg. Chem., 1998, 624, 919.

Communication a908591b