A NEIGHBOURING GROUP PARTICIPATION OF *ORTHO*-METHOXYL GROUP IN SOLVOLYTIC REACTION OF SPIRO[2.5]OCTA-1,4,7-TRIEN-6-ONES

Toshihiko IKEDA, Shinjiro KOBAYASHI, and Hiroshi TANIGUCHI Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812

In aqueous ethanol l-aryl-5,7-di-t-butyl-2-(o-methoxyphenyl)spiro[2.5]octa-1,4,7-trien-6-one  $\underline{4}$  changed to 2-aryl-3-(3',5'-di-tbutyl-4'-hydroxyphenyl)benzofuran  $\underline{5}$  in a more than 90% yield. The selective formation of  $\underline{5}$  is ascribed to a neighbouring group participation of the *ortho*-methoxyl group to an incipient vinyl cation.

There are many examples of neighbouring group participations which are one of the most interesting subjects in the chemistry of trivalent carbocations.<sup>1)</sup> However, there are only a few examples<sup>2,3)</sup> in the chemistry of vinyl cations which have been well-established.<sup>4)</sup> We reported exclusive formation of benzofuran derivatives without an anchimeric acceleration by the *ortho*-methoxyl group in the sol-volysis of vinyl bromide  $\underline{1}$ ,<sup>5)</sup> while we suggested a neighbouring group participation of the methoxyl group in the reaction of spiro[2.5]octatrienone  $\underline{3}$  which was intervenient in the solvolysis of vinyl bromide  $\underline{2}$ .<sup>6)</sup>

We would like to report here evidence for a neighbouring group participation



of the *ortho*-methoxyl group in the solvolytic reaction of 1-aryl-5,7-di-t-butyl-2-(o-methoxyphenyl)spiro[2.5]octa-1,4,7-trien-6-one 4.<sup>7)</sup>

The reaction of spiro[2.5]octatrienone  $\underline{4c}$  (0.17 mmol) in ethanol (10 ml) at ambient temperature for 36 h gave benzofuran  $\underline{5c}$ .<sup>8)</sup> Similar treatments of  $\underline{4a}$ ,  $\underline{4b}$ , and  $\underline{4d}$  also gave  $\underline{5a}$ ,  $\underline{5b}$ , and  $\underline{5d}$ , respectively, as shown in Table 1. In all cases benzofuran  $\underline{5}$  was obtained in a more than 90% yield, while the solvent-incorporated products, the vinyl ethyl ethers and the ketones, could not be detected. Benzofuran  $\underline{5}$  was formed by breaking the specific C-C bond of the cyclopropene ring(path a). However, under acidic conditions the reaction of  $\underline{4c}$  gave not only  $\underline{5c}$  but also a product through the other C-C bond cleavage(path b). For instance, the mixture of  $\underline{4c}$  (0.3 mmol), ethanol (9 ml), and trifluoroacetic acid (1 ml) was kept to stand at a room temperature for 46 h, and after evaporation of the solvent with a water pump  $\underline{5c}$  and ketone  $\underline{6}^{8}$  were obtained in 86 and 14% yields, respectively.

To reveal the reaction mechanism for the selective formation of benzofuran 5 the reaction rates of 4 were measured and the obtained first-order rate constants are shown in Table 2 and 3. The reaction was accelerated by substitution of an electron donating group (MeO>Me>H>Br). The Hammett plots against  $\sigma^+$  afforded a negative  $\rho^+$ , -2.3. Furthermore, a rate enhancement was observed with increasing water content in the solution, and a Grunwald-Winstein's m-value, 0.45, was calculated. As shown in Table 3 the rate constants were unchanged in basic solutions but in more acidic solutions (pH <10.5) the rate increased as the pH decreased. The degree of these effects in a substituent, solvent polarity, and solvent's pH were lower than those in the solvolysis of spiro[2.5]octatrienone 7 to generate vinyl cation 8 ( $\rho^+$ = -3.0, m= 0.53, and 670 time-faster rate in pH 9.75 than in pH

| Compound   | Solvent                        | 5   | (%) * <u>6</u> | (%) * ** (%) * |
|------------|--------------------------------|-----|----------------|----------------|
| <u>4a</u>  | 97% EtOH-3% H <sub>2</sub> O   | 100 | 0              | 0              |
| <u>4b</u>  | 100% EtOH                      | 98  | 0              | 2              |
| <u>4c</u>  | 100% EtOH                      | 96  | 0              | 4              |
|            | EtOH (9 ml) + 0.1N-NaOH (1 ml) | 96  | 0              | 4              |
|            | EtOH (9 ml) + TFA (1 ml)***    | 86  | 14             | 0              |
|            | EtOH (4 m1) + TFA (1 m1)       | 74  | 26             | 0              |
| <u>4 d</u> | 100% EtOH                      | 90  | 0              | 10             |

| Table 1 | Products | of | spiro | 2.5 | locta-1 | . 4 | .7-tr | ien-6-one | s |
|---------|----------|----|-------|-----|---------|-----|-------|-----------|---|
|---------|----------|----|-------|-----|---------|-----|-------|-----------|---|

\* Product distribution was determined by NMR analysis.

\*\* Unidentified product(s). \*\*\* Trifluoroacetic acid.

15, respectively).<sup>9)</sup> These phenomena are well explained by considering an anchimeric assistance of the *ortho*-methoxyl group in the formation of benzofuran <u>5</u>. Hydrogen bonding or protonation on the carbonyl oxygen perturbs the cyclopropene ring to weaken both C-C bonds of the ring. Judging from the results in the solvolysis of <u>7</u>, bond <u>b</u> must break more easily than bond <u>a</u> to give more stable vinyl cation in cases of <u>4b-d</u>. However, the cleavage of bond <u>a</u> occures faster than that of bond <u>b</u>. The cleavage of bond <u>a</u> should be caused by an intramolecular nucleophilic attack of the *ortho*-methoxyl group, that is, a neighbouring group participation. This mechanism is also consistent with the following results; i) the relative rate of <u>4c</u> to <u>7c</u>, both of which are considered to generate  $\alpha$ -phenylvinyl cations, was 336 and ii) the extent of cleavage of bond <u>a</u> to bond <u>b</u> was larger in a basic solution than in an acidic solution, because the neighbouring group participation should depend on the perturbation of the bond <u>a</u>, that is, the neighbouring group participation must be more effective in case of hydrogen bonding (in a basic solution) than in case of protonation.



Table 2 Kinetics of 1-ary1-5,7-di-t-buty1-2-pheny1- and 5,7-di-t-buty1-1,2-dipheny1spiro[2.5]octa-1,4,7-trien-6-ones in aqeous ethano1

| Compound  | Solvent/% EtOH | Temp/ °C | $k/10^4 s^{-1} a)$ |
|-----------|----------------|----------|--------------------|
| <u>7a</u> | 90             | 20       | $87.0 + 2.3^{b}$   |
| <u>7b</u> | 90             | 20       | 12.1 + 0.2         |
|           | 90             | 20       | $12.4 \pm 0.5^{b}$ |
| <u>7c</u> | 70             | 20       | 10.6 + 0.4         |
|           | 80             | 20       | 6.36 + 0.53        |
|           | 90             | 20       | 1.92 + 0.05        |
|           | 100            | 20       | 0.781 + 0.028      |
|           | ( Continue     | ed)      |                    |

393

|            | 90 | 25 | $3.00 \pm 0.05$      |
|------------|----|----|----------------------|
|            | 90 | 30 | $4.89 \pm 0.21$      |
|            | 90 | 70 | 110 <sup>c)</sup>    |
| <u>4 d</u> | 90 | 20 | $0.637 \pm 0.029$    |
| <u>7 c</u> | 90 | 70 | $0.635 \pm 0.12^{d}$ |
|            |    |    | 0.327 <sup>e)</sup>  |

a) All reactions were followed spectrospcopically.
b) 0.17% of absolute ether was contained.
c) Extrapolated from data at lower temperature.
d) Taken from ref.
e) Corrected statistically.

Table 3 Kinetics of 1-(p-bromopheny1)-5,7-di-t-buty1-2-(o-methoxypheny1)-

| spiro[2.5]octa-1,4,7-trien | -6-one <u>4d</u> in absolute | methanol at 2     | 25 °C             |
|----------------------------|------------------------------|-------------------|-------------------|
| Added Solutes              | $Conc/ 10^3 mo1 1^{-1}$      | pH <sup>a</sup> ) | $k/10^4 s^{-1 b}$ |
| CH3COOH/CH3COONa           | 65.0/63.3                    | 9.751             | 42.5 <u>+</u> 0.3 |
| CH3COOH/CH3COONa           | 47.2/76.0                    | 9.969             | 31.6 <u>+</u> 0.3 |
| CH3COOH/CH3COONa           | 29.4/88.7                    | 10.24             | 17.9 <u>+</u> 0.1 |
| CH <sub>3</sub> ONa        | 1.90                         | 13.98             | 2.18 ± 0.04       |
| CH <sub>3</sub> ONa        | 38.0                         | 15.28             | $2.18 \pm 0.01$   |
| CH <sub>3</sub> ONa        | 380                          | 16.28             | $2.33 \pm 0.01$   |
|                            |                              |                   |                   |

a) According to ref. 10). b) All reactions were followed spectroscopically.

## References

1) G.A.Olah and P.v.R.Scleyer, Ed., "Carbonium Ions", Wiley-Interscience, New York, N.Y. Vol. 1-4(1968-1973).

2) A.Burighel, G.Modena, and U.Tonellato, J.Chem.Soc. Perkin II, <u>1972</u>,2026.

3) P.J.Stang and T.E.Deuber, J.Am.Chem.Soc., 99,2602(1977).

4) P.J.Stang, Z.Rappoport, M.Hanack, and L.R.Subramanian, "Vinyl Cations", Academic Press, New York, 1979.

5) T.Sonoda, S.Kobayashi, and H.Taniguchi, Bull.Chem.Soc.Jpn, <u>49</u>,2560(1976).

6) H.Ohba, T.Ikeda, S.Kobayashi, and H.Taniguchi, Chem.Comm., <u>1980</u>,988.

7) T.Ikeda, S.Kobayashi, and H.Taniguchi, Synthesis in press.

8) Mp and spectral data. 5a; 138-141°C.  $\delta$  1.40(s.18H), 5.12(s,1H), 7.03-7.80(m,11 H).  $\lambda_{max}$  304 nm(log  $\epsilon$ , 4.25), 242(4.32). MS(M<sup>+</sup>); 398. 5b; 175-177°C.  $\delta$  1.41(s,18H), 3.74(s,3H), 5.09(s,1H), 6.54-7.67(m,10H).  $\lambda_{max}$  313 nm(log  $\epsilon$ , 4.37), 248(4.33). MS (M<sup>+</sup>) 428. 5c; 195-197°C.  $\delta$  1.40(s,18H), 2.32(s,3H), 5.07(s,1H), 6.85-7.60(m,10H).  $\lambda_{max}$  310 nm(log  $\epsilon$ , 4.32), 243(4.32). MS(M<sup>+</sup>) 412. 5d; 221-223°C.  $\delta$  1.43(s,18H), 5.15(s,1H), 7.05-7.63(m,10H).  $\lambda_{max}$  326 nm(log  $\epsilon$ , 4.35sh), 319(4.35), 243(4.32). MS (M<sup>+</sup>) 478, 476.  $\underline{6}$ ;  $\delta$  1.34(s,18H), 3.72(s,3H), 4.98(s,1H), 5.75(s,1H), 6.62-7.87(m, 11H).  $\nu_{max}$  3560 and 1670 cm<sup>-1</sup>. MS(M<sup>+</sup>) 430. NMR spectra were measured in CC1, with TMS as an internal standard and UV in cyclohexane.

9) T.Ikeda, S.Kobayashi, and H.Taniguchi, under submitting to Chem.Lett.

10) S.Winstein and R.Baird, J.Am.Chem.Soc., <u>85</u>,567(1963).

(Received December 18, 1981)