Chem. Pharm. Bull. **36**(2) 634—640 (1988)

Nucleosides. CXLVIII. Synthesis of 6-(β-D-Ribofuranosyl)picolinamide. A Novel C-Nucleoside from D-Ribonolactone

MAREK M. KABAT, KRZYSZTOF W. PANKIEWICZ, ELZBIETA SOCHACKA and KYOICHI A. WATANABE*

Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division of Graduate School of Medical Sciences, Cornell University, New York, NY 10021, U.S.A.

(Received August 17, 1987)

Treatment of 2,4:3,5-di-O-benzylidene-D-aldehydo-ribose (1) with 2-bromo-6-lithiopyridine afforded a mixture of the altro and allo isomers of 6-(2,4:3,5-di-O-benzylidene-D-pentitol-1-yl)-2-bromopyridine (2 and 3, respectively). These isomers were chromatographically separated. Compound 2 was converted into $6-(\beta$ -D-ribofuranosyl)-2-bromopyridine (6) by mesylation of the 1'-hydroxyl group of 2 followed by treatment with trifluoroacetic acid. In a similar manner, the α -isomer 7 was prepared from 3. The same pyridine-C-nucleosides, 6 and 7, were also synthesized from the commercially available D-ribonolactone in seven steps.

The bromo function of **2** and **3** was converted into the carboxamide group to give 6-(2,4:3,5-di-O-benzylidene-D-altro-pentitol-1-yl)picolinamide (**10**) and its allo isomer**11**. Mesylation of**10** $followed by trifluoroacetic acid treatment afforded <math>6-(\beta-D-ribofuranosyl)$ picolinamide (**14**). Similar treatment of **11** gave the α counterpart **15**.

Keywords—new *C*-nucleoside; D-ribonolactone; tiazofurin analogue; 6-(2-bromopyridin-6-yl)-2,3-*O*-benzylidene-5-*O*-tetrahydropyranyl-D-ribofuranose; 6-(β -D-ribofuranosyl)-2-bromopyridine; 6-(α -D-ribofuranosyl))-2-bromopyridine; 6-(β -D-ribofuranosyl)picolinamide; 6-(α -D-ribofuranosyl)picolinamide

Recently, we synthesized¹⁾ 5-(β -D-ribofuranosyl)nicotinamide and its N-methylated derivative, which are the C-nucleosides isosteric and isoelectronic, respectively, to natural nicotinamide riboside, by condensation of 3-bromo-5-lithiopyridine with 2,4:3,5-di-O-benzylidene-D-aldehydo-ribose (1) followed by conversion of the bromo function into carboxamido group. There has been a persisting belief that sulfur is isosteric to vinylene since the time of Erlenmeyer²⁾ who first made use of this concept to explain the similarity between benzene and thiophene. Actually, an benzoazepin which can be considered a chlorpromazine analogue in which the sulfur of the phenothiazine of the latter is replaced by vinylene also exhibit tranquilizer activity.³⁾ Thus, we intended to synthesize 6-(β -D-ribofuranosyl)picolinamide (14) which can be viewed as an isostere of the potent anticancer agent, tiazofurin.⁴⁾

Reaction of 1 (Chart 1) with 2-bromo-6-lithiopyridine in a mixture of hexane and tetrahydrofuran (THF) at -78 °C gave a mixture from which the *altro* and *allo* isomers (2 and 3) were isolated in 19 and 23% yield, respectively, which were acetylated to 2a and 3a for characterization by ¹H-nuclear magnetic resonance (¹H-NMR) spectroscopy. After mesylation of 2 and 3, the corresponding 1'-mesylates 4 and 5 were treated with trifluoroacetic acid (TFA) in chloroform. From the *altro* isomer 4, the β -C-nucleoside 6 was obtained, and the *allo* intermediate 5 afforded the α -C-nucleoside 7. This in turn supported the assignment of the *altro* and *allo* intermediate structures 2 and 3.

Compounds 2 and 3 were converted into the corresponding picolinamides, 10 and 11, by lithiation, carboxylation, and esterification with CH_2N_2 to give the corresponding methyl

picolinates, 8 and 9, which were treated with NH₃-MeOH. Conversion of 10 and 11 into their corresponding mesylates, 12 and 13, followed by solvolysis with trifluoroacetic acid afforded the desired 6-(β -D-ribofuranosyl)picolinamide (14) from 12, and its α -isomer 15 from 13. A similar synthesis of 2-ribosylpyridine was also reported.⁵⁾

Prerequisite of the syntheses of these C-nucleosides was to prepare 1 from D-ribose via the diethylmercaptide and the method was not only inefficient but also inappropriate for large-scale synthesis. Ogura and Takahashi⁶⁾ has synthesized 1-(pyridin-2-yl)-2,3:5,6-di-O-isopropylidene-α-L-gulofuranose by condensation of 2,3:5,6-di-O-isopropylidene-L-gulono-lactone and 2-lithiopyridine. We, therefore, applied their method to commercially available D-ribonolactone for the synthesis of our desired C-nucleosides.

D-Ribonolactone (16) was converted in two steps to the known⁷⁾ 2,3-O-isopropylidene-5-O-(tetrahydropyran-2-yl)-D-ribonolactone (17) (Chart 2) in high yield as a mixture of diastereomers. Treatment of 17 with 2-bromo-6-lithiopyridine afforded the diastereomeric 1-(2-bromopyridin-6-yl)-2,3-isopropylidene-5-O-(tetrahydropyran-2-yl)-D-ribofuranose 18 in ca. 65% yield. One of the diastereomers was obtained in crystalline form which we assign 1-(2-bromopyridin-6-yl)-2,3-O-isopropylidene-5-O-(tetrahydropyran-2-yl)- β -D-ribofuranose (18) on the following basis: The difference in chemical shifts of two methyl isopropylidene signals was large (16 Hz) in CDCl₃ but very small (4 Hz) in Me₂SO-d₆. It is therefore impossible to use the Imbach's rule⁸⁾ for the assignment of anomeric configuration. In the 1'-

O-acetyl derivative, however, the H-2' signal showed considerable paramagnetic shift indicating that H-2' and 1'-OH in 18 are on the same side of the lacton ring, i.e., the β configuration.

Upon treatment of crystalline 18 with NaBH₄, a ca. 4:1 allo/altro 19 mixture was obtained. The same mixture 19 was obtained from the diastereomeric 18. After removal of the tetrahydropyran-2-yl group from 19, the crystalline allo-pentitolylpyridine 20 and its altro isomer 21 were separated by chromatography. The altro isomer 21 was treated with acetone and p-toluenesulfonic acid to give $6-(2,3:4,5-di-O-isopropylidene-D-altro-pentitol-1-yl)-2-bromopyridine (23) which slowly isomerized to the 1,2:4,5-di-O-isopropylidiene derivative 24 in an acidic medium. Compound 23 was mesylated to 27 which, upon treatment with TFA was converted into the β-C-nucleoside <math>6.^{1,9}$ In a similar manner, the allo isomer 20 was further isopropylidenated to 22 which, after mesylation to 26 followed by solvolysis, afforded the α-C-nucleoside 7.

6-(β-D-Ribofuranosyl)picolinamide (14) showed weak inhibitory activity against L1210/0, P815/0, HL-60 and CCRF-CEM cell lines with ID₅₀ values of 4.06, 206, 290 and 74.8 μ M.

Experimental

General Methods—Melting points were determined on a Thomas-Hoover capillary apparatus and are uncorrected. 1H -NMR spectra were recorded on a JEOL FX90Q Spectrometer with Me₄Si as the internal standard. Chemical shifts are reported in ppm (δ) and signals are described as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br s (broad singlet), dd (double doublet), dm (double multiplet). Values given for coupling constants are of first order. Thin layer chromatography (TLC) was performed on Uniplates (Analtech Co., Newark, DE) and

column chromatography on Woelm silica gel (70—230 mesh). Microanalyses were performed by M.H.W. Laboratories, Phoenix, AZ. Mass spectra (MS) (chemical ionization) were taken at the Rockefeller University, Mass Spectrometric Biotechnology Resources Facility.

6-(2,4:3,5-Di-O-benzylidene-p-altro-pentitol-1-yl)-2-bromopyridine (2) and 6-(2,4:3,5-Di-O-benzylidene-allo-pentitol-1-yl)-2-bromopyridine (3)—To a solution of 2,6-dibromopyridine (2.18 g, 9.2 mmol) in dry Et_2O (100 ml) was slowly added a solution of n-BuLi (3.68 ml, 2.5 m solution in hexane, 9.6 mmol) at $-78\,^{\circ}C$ under argon atmosphere. After addition was completed, the reaction mixture was stirred for 15 min. A solution of 1 (1.0 g, 3.06 mmol) in THF (10 ml) was added to the reaction, and then the mixture was allowed to warm slowly to room temperature. Water (50 ml) was added, the organic layer separated. The aqueous layer was washed with Et_2O (3×25 ml). The combined organic layer and extracts were washed with brine (3×20 ml), dried (Na₂SO₄), concentrated, and the residue chromatographed on a silica gel column using successively 6, 8 and 12% EtOAc-hexane as the eluents. The allo isomer 3 was eluted from the column first, followed by the altro isomer 2.

Compound **2** (282 mg, 19%) was obtained as a foam. $^1\text{H-NMR}$ (CDCl₃) δ : 3.90—4.05 (3H, m, H-4′,5′,5′′), 4.34—4.44 (2H, m, H-2′,3′), 4.85—5.10 (1H, br d, H-1′), 5.66 (2H, s, = CHPh), 7.24—7.49 (13H, m, = CHPh and H-3,4,5). MS m/z: 484 (MH+, 100). Acetate **2a** was obtained as a foam from **2** (70 mg) with Ac₂O and 4-(dimethylamino)pyridine (DMAP). $^1\text{H-NMR}$ (CDCl₃) δ : 2.22 (3H, s, Ac), 3.79—3.94 (3H, m, H-4′,5′,5′′), 4.45—4.58 (2H, m, H-2′,3′), 5.57 (1H, s, = CHPh), 5.64 (1H, s, = CHPh), 6.20 (1H, d, H-1′, $J_{1',2'}$ = 3.0 Hz), 7.00—7.69 (13H, m, = CHPh, H-3,4,5). Anal. Calcd for C₂₆H₂₄BrNO₆: C, 59.32; H, 4.59; N, 2.66. Found: C, 59.52; H, 4.70; N, 2.47. The allo isomer **3** (340 mg, 23%) was obtained also as a foam. $^1\text{H-NMR}$ (CDCl₃) δ : 3.83—4.02 (3H, m, H-4′,5′,5′′), 4.32—4.45 (2H, m, H-2′,3′), 5.14 (1H, dd, H-1′, collapsed to d on addition of D₂O, $J_{1',2'}$ = 3.0 Hz), 5.50 (1H, s, = CHPh), 5.78 (1H, s, = CHPh), 7.05—7.52 (13H, m, Ph, H-3,4,5). MS m/z: 484 (MH+, 100). $^1\text{H-NMR}$ of acetate **3a** (CDCl₃) δ : 2.08 (3H, s, Ac), 3.84—3.93 (3H, m, H-4′,5′,5′′), 4.32—4.65 (2H, m, H-2′,3′), 5.58 (1H, s, = CHPh), 5.75 (1H, s, = CHPh), 6.21 (1H, d, H-1′, $J_{1',2'}$ = 3.6 Hz), 7.25—7.48 (13H, m, Ph, H-3,4,5). Anal. Calcd for C₂₆H₂₄BrNO₆: C, 59.32; H, 4.59; N, 2.66. Found: C, 59.22; H, 4.73; N, 2.53.

6-(2,4:3,5-Di-*O*-benzylidene-1-*O*-mesyl-D-*altro*-pentitol-1-yl)-2-bromopyridine (4)—A mixture of **2** (50 mg, 0.1 mmol) in CH₂Cl₂ (4 ml) containing Et₃N (0.1 ml, 0.72 mmol) and catalytic amount of DMAP was treated with MsCl (30 μ l, 0.38 mmol) at room temperature. The mixture was stirred for 30 min, and concentrated *in vacuo*. The residue was chromatographed on a silica gel column using hexane–EtOAc (19:1) as the eluent to give **4** (50 mg, 86%) as a foam. ¹H-NMR (CDCl₃) δ: 3.02 (3H, s, Ms), 3.92—4.08 (3H, m, H-4′,5′,5′′), 4.38—4.52 (2H, m, H-2′,3′), 5.62 (1H, s, = CḤPh), 5.65 (1H, s, = CḤPh), 5.93 (1H, d, H-1′, $J_{1',2'}$ = 3.0 Hz), 7.25—7.57 (13H, m, Ph, H-3,4,5). MS m/z: 562 (MH⁺, 100), 107 (PhCHOH⁺, 30).

In a similar manner, 6-(2.4:3.5 di-O-benzylidene-D-allo-pentitol-1-yl)-2-bromopyridine (5) was obtained as a foam. ¹H-NMR (CDCl₃) $\delta: 3.03$ (3H, s, Ms), 3.86-3.93 (3H, m, H-4′,5′,5′′), 4.25-4.39 (1H, m, H-3′), 4.72-4.86 (1H, m, H-2′), 5.51 (1H, s, =CHPh), 5.84 (1H, s, =CHPh), 5.90 (1H, d, H-1′, $J_{1',2'}=2.5 \text{ Hz}$), 7.59-7.95 (13H, m, Ph, H-3,4,5). MS m/z: 562 (MH⁺, 100), 107 (PhCHOH⁺, 40).

6-(β-D-Ribofuranosyl)-2-bromopyridine (6)—A solution of **4** (40 mg, 0.07 mmol) in a mixture of CF₃CO₂H and CHCl₃ (4:1, v/v) (3 ml) was stirred for 20 min at room temperature. Water (10 ml) was added, and the aqueous layer was washed with Et₂O (3 × 10 ml). The aqueous layer was then concentrated *in vacuo*, and the residue chromatographed on a silica gel column using CHCl₃–MeOH (9:1, v/v) as the eluent to give **5** (15 mg, 73%) as a foam. ¹H-NMR (Me₂SO- d_6) δ: 3.46—4.01 (5H, m, H-2′,3′,4′,5′,5′′), 4.66 (1H, d, H-1′, $J_{1',2'}$ = 4.1 Hz), 7.47—7.85 (3H, H-3,4,5). *Anal.* Calcd for C₁₀H₁₂BrNO₄·1.5H₂O: C, 37.87; H, 3.86; N, 4.42. Found: C, 37.97; H, 4.20; N, 4.32. Contamination of 1.5 mol of H₂O was detected in the ¹H-NMR spectrum of this analytical sample.

In a similar manner, 6-(α -D-ribofuranosyl)-2-bromopyridine (7) was obtained in 70% yield also as a foam. ¹H-NMR (Me₂SO- d_6) δ : 3.48—4.16 (5H, m, H-2′,3′,4′,5′,5′′), 4.94 (1H, d, H-1′, $J_{1',2'}$ = 3.0 Hz), 7.39—7.81 (3H, m, H-3,4,5). *Anal.* Calcd for C₁₀H₁₂BrNO₄: C, 41.40; H, 4.17; N, 4.83. Found: C, 41.27; H, 4.20; N, 4.77.

Methyl 6-(2,4:3,5-Di-O-benzylidene-D-altro-pentitol-1-yl)picolinate (8)—To a solution of 2 (200 mg, 0.43 mmol) in a mixture of hexamethylphosphoramide (HMPA) (0.25 ml) and Et₂O (5 ml) was added a solution of *n*-BuLi (2 ml of 2.5 m solution in hexane, 5 mmol) under argon atmosphere at -78 °C. After the addition, the mixture was stirred at -78 °C for 15 min. A large excess of solid CO₂ was added, and the mixture was allowed to warm to room temperature. The mixture was acidified with 1 n HCl to pH 4. The organic layer was washed with brine (3×5 ml), dried (Na₂SO₄), and filtered. The filtrate was cooled to 0 °C, and treated with large excess of CH₂N₂. Excess CH₂N₂ was destroyed by addition of HOAc. The mixture was concentrated *in vacuo*, and the residue chromatographed on a silica gel column using hexane–EtOAc (3:1) to give 8 (122 mg, 64%) as colorless crystals, mp 176—179 °C. ¹H-NMR (CDCl₃) δ: 3.95 (3H, s, Me), 3.95—4.43 (5H, m, H-2',3',4',5',5''), 5.25 (1H, br s, H-1'), 5.64 (1H, s, = CHPh), 5.67 (1H, s, = CHPh), 7.31—8.07 (13H, m, Ph, H-3,4,5). MS m/z: 464 (MH⁺, 100), 107 (PhCHOH⁺, 80).

Similar treatment of 3 (200 mg) with n-BuLi and CO₂ resulted in the formation of methyl 6-(2,4:3,5-di-O-benzylidene-D-allo-pentitol-1-yl)picolinate (9) (115 mg, 60%) as a foam. $^1\text{H-NMR}$ (CDCl₃) δ : 3.97 (3H, s, Me), 3.45—4.51 (5H, m, H-2',3',4',5',5''), 5.28 (1H, d, H-1', $J_{1',2'}$ = 2.5 Hz), 5.49 (1H, s, = C $\underline{\text{HPh}}$), 5.79 (1H, s, = C $\underline{\text{HPh}}$), 6.95—8.02 (13H, m, Ph, H-3,4,5). MS m/z: 464 (MH $^+$, 100), 107 (PhCHOH $^+$, 75).

6-(2,4:3,5-Di-*O*-benzylidene-D-*altro*-pentitol-1-yl)picolinamide (10)——A mixture of **8** (700 mg, 1.56 mmol) and a catalytic amount of NaH in saturated NH₃-MeOH (50 ml) was stirred at room temperature overnight. The solvent was removed, and the residue chromatographed on a silica gel column (CHCl₃-MeOH, 49:1) to give **10** (620 mg, 92%) as a foam. ¹H-NMR (CDCl₃) δ: 3.92—4.09 (3H, m, H-4′,5′,5′′), 4.40—4.47 (2H, m, H-2′,3′), 5.12 (1H, br s, H-1′), 5.66 (1H, s, PhCH), 5.71 (1H, s, PhCH), 7.31—8.17 (13H, m, Ph, H-3,4,5). MS m/z: 449 (MH⁺, 50), 107 (PhCHOH⁺, 100).

In a similar manner, 6-(2,4:3,5-di-O-benzylidene-D-allo-pentitol-1-yl)picolinamide (11) was obtained from 9 in 89% as colorless crystals, mp 201—203 °C (from hexane–EtOAc). ¹H-NMR (CDCl₃) δ : 3.83—4.10 (3H, m, H-4′,5′,5′′), 4.29—4.56 (2H, m, H-2′,3′), 5.19 (1H, dd, H-1′, became d on addition of D₂O, $J_{1',2'}$ = 3.3 Hz), 5.51 (1H, s, PhCH), 5.78 (1H, s, PhCH), 7.11—8.07 (13H, Ph, H-3,4,5). *Anal.* Calcd for C₂₅H₂₄N₂O₄: C, 66.95; H, 5.39; N, 6.24. Found: C, 66.60; H, 5.45; N, 6.18.

6-(2,4:3,5-Di-*O*-benzylidene-1-*O*-mesyl-D-*altro*-pentitol-1-yl)picolinamide (12)—A mixture of 10 (50 mg, 0.11 mmol) in CH₂Cl₂ (4 ml) containing Et₃N (100 μ l, 0.72 mmol) and a catalytic amount of DMAP and MsCl (30 μ l, 0.38 mmol) was stirred at room temperature for 30 min, and then concentrated *in vacuo*. After chromatography on a silica gel column (CH₂Cl₂–MeOH, 49:1, v/v), 12 (49 mg, 83%) was obtained as colorless crystals (from hexane–Et₂O), mp 109—114 °C. ¹H-NMR (CDCl₃) δ: 3.02 (3H, s, Ms), 3.94—4.09 (3H, m, H-4',5',5''), 4.35—4.48 (2H, m, H-2',3'), 5.61 (1H, s, PhCH), 5.68 (1H, s, PhCH), 6.03 (1H, d, H-1', $J_{1',2'}$ = 2.5 Hz), 7.25—7.43 (10H, m, Ph), 7.65—8.19 (3H, m, H-3,4,5). MS m/z: 527 (MH⁺, 100).

In a similar manner, 6-(2,4:3,5-di-O-benzylidene-1-O-mesyl-D-allo-pentitol-1-yl)picolinamide (13) was obtained in 87% yield as a foam from 11. 1 H-NMR (CDCl₃) δ : 3.03 (3H, s, Ms), 3.84—3.91 (3H, m, H-4′,5′,5′′), 4.24 (1H, m, H-3′), 4.42 (1H, m, H-2′), 5.50 (1H, s, PhCH), 5.83 (1H, s, PhCH), 5.99 (1H, d, H-1′, $J_{1',2'}$ =2.5 Hz), 7.04—8.20 (13H, m, Ph, H-3,4,5). MS m/z: 527 (MH $^+$, 100).

6-(β-D-Ribofuranosyl)picolinamide (14)—Compound **12** (32 mg, 0.06 mmol) was dissolved in a 4:1 mixture of CF₃CO₂H and CHCl₃ (v/v) (3 ml), and the solution stirred for 20 min at room temperature. The reaction was quenched by addition of H₂O, and the aqueous layer was separated, washed with Et₂O (3×10 ml), and then concentrated *in vacuo*. The residue was purified by column chromatography (CHCl₃–MeOH, 9:1, v/v) to give **14** (10 mg, 64%) as a colorless syrup. ¹H-NMR (Me₂SO- d_6) δ: 3.91–3.96 (2H, m, H-5',5''), 4.01–4.19 (3H, m, H-2',3',4'), 4.73–4.89 (3H, m, H-1', 2×OH, collapsed to d at δ 4.77 by addition of D₂O, $J_{1',2'}$ = 4.9 Hz), 7.68–8.00 (3H, m, H-3,4,5). *Anal.* Calcd for C₁₁H₁₄N₂O₅: C, 51.96; H, 5.55; N, 11.02. Found: C, 51.61; H, 5.82; N, 10.77.

By similar treatment of 13 (28 mg, 0.06 mmol), 6-(α -D-ribofuranosyl)picolinamide (15) (8 mg, 57%) was obtained as a syrup. 1 H-NMR (Me₂SO- d_6) δ : 3.56—4.22 (5H, m, H-2′,3′,4′,5′,5′′), 5.04 (1H, d, H-1′, $J_{1',2'}$ =0.5 Hz), 7.33—7.94 (3H, m, H-3,4,5). MS m/z: 255 (MH⁺, 100).

1-(2-Bromopyridin-6-yl)-2,3-*O*-isopropylidene-5-*O*-(tetrahydropyran-2-yl)-β-D-ribofuranose (18) — To a solution of 2,6-dibromopyridine (6.1 g, 25.7 mmol) in dry Et₂O (250 ml) was slowly added a solution of *n*-BuLi (10.3 ml of 2.5 m solution in hexane, 25.7 mmol) below $-50\,^{\circ}$ C under argon atmosphere. After addition was completed, the mixture was stirred for 15 min. To this mixture was added dropwise a solution of 17 (5.0 g, 18.4 mmol) in THF (40 ml). The mixture was allowed to warm slowly (2 h) to room temperature. The reaction was quenched by addition of H₂O (50 ml). The aqueous layer was extracted with Et₂O (3 × 30 ml). The combined organic layer and extracts were washed (H₂O, 30 ml), dried (Na₂SO₄), concentrated *in vacuo*, and the residue chromatographed (hexane–EtOAc, 9:1) to give an 1:1 diastereomeric mixture of 18 (6.12 g, 63.5%) as a syrup. ¹H-NMR (CDCl₃) δ: 1.27 (3H, s, iso-Pr), 1.43 (3H, s, iso-Pr), 1.43—1.67 (6H, m, THP), 3.59—4.10 (4H, m, H-5′,5′′, THP), 4.47—5.00 (4H, m, H-2′,3′,4′, THP), 5.45 (1/2H, s, OH), 5.52 (1/2H, s, OH), 7.26—7.65 (3H, m, H-3,4,5), ¹H-NMR (Me₂SO-d₆) δ: 1.18 (3H, s, iso-Pr), 1.22 (3H, s, iso-Pr).

One of the diastereomers was crystallized from CHCl₃-hexane, mp 144—145 °C. ¹H-NMR (CDCl₃) δ : l.27 (3H, s, iso-Pr), 1.44 (3H, s, iso-Pr), 1.51—1.71 (6H, m, THP), 3.59—4.10 (4H, m, H-5′,5′′, THP), 4.52 (1H, dt, H-4′, $J_{3',4'}=1.4$, $J_{4',5'}=J_{4',5''}=5.7$ Hz), 4.65—4.76 (2H, m, H-2′,3′), 4.92 (1H, dd, THP), 5.50 (1H, s, OH), 7.26—7.71 (3H, m, H-3,4,5), (Me₂SO- d_6) δ : 1.18 (3H, s, iso-Pr), 1.22 (3H, s, iso-Pr). MS m/z: 430 (MH $^+$, 30), 348 (MH $^+$ - THP, 60). Anal. Calcd for C₁₈H₂₄BrNO₆: C, 50.24; H, 5.62; N, 3.26. Found: C, 50.23; H, 5.65; N, 3.21.

A small amount of 1:1 diastereomeric mixture of 18 was acetylated with Ac_2O and DMAP in CH_2Cl_2 . ¹H-NMR (CDCl₃) δ : 1.25 (3H, s, iso-Pr), 1.28 (3H, s, iso-Pr), 1.54—1.75 (6H, m, THP), 2.05 (3H, s, Ac), 3.42—3.89 (4H, m, H-5′,5′′, THP), 4.63 (2H, m, H-3′,4′), 4.92—5.03 (1H, m, H-2′), 7.27—7.69 (3H, m, H-3,4,5).

6-[2,3-*O*-Isopropylidene-5-*O*-(tetrahydropyran-2-yl)-p-pentitol-1-yl]-2-bromopyridine (19)—Crystalline 18 (3.2 g, 7.44 mmol) was dissolved in MeOH (50 ml) and treated with NaBH₄ (1.0 g, 27 mmol). The mixture was stirred at room temperature for 1 h, then concentrated *in vacuo*. The residue was partitioned between Et₂O (150 ml) and H₂O (150 ml). The organic layer was separated, dried (Na₂SO₄), concentrated *in vacuo*, and the residue chromatographed on a silica gel column (CHCl₃–EtOH, 19:1, v/v) to give an *allo/altro* mixture 19 (3.05 g, 95%) as an oil which solidified when stored at room temperature, mp 109—111 °C. ¹H-NMR (CDCl₃) δ: 1.27, 1.30, 1.44, 1.48 (total 6H, four s, iso-Pr), 1.49—1.79 (6H, m, THP), 3.61—5.03 (11H, m, H-1',2',3',4',5',5'', THP, two OH), 7.26—7.65 (3H, m, H-3,4,5). *Anal*. Calcd for C₁₈H₂₆BrNO₆: C, 50.01; H, 6.06; N, 3.24. Found: C, 50.09; H, 6.12; N, 3.17.

Reduction of the diastereomeric mixture of 18 gave the identical allo/altro product 19.

6-(2,3-O-Isopropylidene-D-alto-pentitol-1-yl)-2-bromopyridine (20) and 6-(2,3-O-Isopropylidene-D-altro-pentitol-1-yl)-2-bromopyridine (21)— The above mixture 19 (920 mg, 2.13 mmol) was dissolved in MeOH (5 ml) containing a catalytic amount of TsOH (ca. 2 mg). The mixture was stirred at room temperature, and the reaction was monitored by TLC (CHCl₃-EtOH, 19:1, v/v). When the reaction was completed, the mixture was neutralized with NH₃-MeOH, and then concentrated in vacuo. The residue was chromatographed on a silica gel column using successively CHCl₃, CHCl₃ containing 1, 2 and 5% of EtOH as the eluents. The allo isomer 20 was eluted first from the column and was crystallized from EtOAc-hexane (478 mg, 64%), mp 124—125 °C. ¹H-NMR (Me₂SO-d₆) δ : 1.16 (3H, s, iso-Pr), 1.24 (3H, s, iso-Pr), 3.49—4.76 (7H, m, H-1',2',3',4',5',5'' and 5'-OH: upon addition of D₂O, H-1' appeared at δ 4.69 as d, $J_{1',2'}$ =9.0 Hz), 5.10 (1H, d, OH), 6.20 (1H, d, OH), 7.43—7.83 (3H, m, H-3,4,5). Anal. Calcd for C₁₃H₁₈BrNO₅: C, 44.84; H, 5.21; N, 4.02. Found: C, 44.81; H, 5.25; N, 3.99.

The *altro* isomer **21** (157 mg, 18%) was then eluted from the column, mp 102—104 °C. ¹H-NMR (Me₂SO- d_6) δ : 1.18 (3H, s, iso-Pr), 1.42 (3H, s, iso-Pr), 3.57—3.68 (2H, m, H-5′,5′′), 4.05—4.36 (2H, m, H-3′,4′), 4.55 (2H, m, H-2′, OH), 4.96 (2H, m, H-1′, OH: upon addition of D₂O, m became s), 5.30 (1H, d, OH), 7.41—7.83 (3H, m, H-3,4,5). *Anal.* Calcd for C₁₃H₁₈BrNO₅: C, 44.84; H, 5.21; N, 4.02. Found: C, 44.68; H, 5.20; N, 4.13.

6-(2,3:4,5-Di-O-isopropylidene-D-*allo*-pentitol-1-yl)-2-bromopyridine (22)—A mixture of **20** (700 mg, 2 mmol) and TsOH (*ca.* 3 mg) in Me₂CO (10 ml) was stirred at room temperature until **20** disappeared (1.5 h, monitored by TLC, CHCl₃-EtOH, 19:1, v/v). The mixture was neutralized with NH₃-MeOH, precipitated salts removed by filtration, the filtrate concentrated *in vacuo*, and the residue purified by column chromatography (CHCl₃-EtOH, 19:1, v/v), and crystallized from CHCl₃-hexane to give **22** (663 mg, 85%), mp 104—106 °C. ¹H-NMR (CDCl₃) δ: 1.26 (3H, s, iso-Pr), 1.39 (6H, s, iso-Pr), 1.43 (3H, s, iso-Pr), 4.00—4.56 (6H, m, H-2', 3', 4', 5', 5'', OH), 4.89 (1H, dd, H-1', collapsed to d upon D₂O addition, $J_{1',2'} = 9.0$ Hz), 7.34—7.66 (3H, m, H-3,4,5). *Anal.* Calcd for C₁₆H₂₂BrNO₅: C, 49.50; H, 5.71; N, 3.61. Found: C, 49.67; H, 5.82; N, 3.67.

6-(2,3:4,5-Di-*O***-isopropylidene-**D**-***altro***-pentitol-1-yl)-2-bromopyridine (23)**—In a similar manner as above **21** was converted into **23** which was obtained in 79% as a foam. 1 H-NMR (CDCl₃) δ: 1.31 (3H, s, iso-Pr), 1.34 (3H, s, iso-Pr), 1.41 (3H, s, iso-Pr), 1.47 (3H, s, iso-Pr), 3.43 (1H, d, OH), 3.86—4.27 (3H, m, H-4',5',5''), 4.48—4.78 (2H, m, H-2',3'), 5.11 (1H, d, H-1', collapsed to s upon D₂O exchange), 7.26—7.58 (3H, m, H-3,4,5). *Anal.* Calcd for $C_{16}H_{22}BrNO_5$: C, 49.50; H, 5.71; N, 3.61. Found: C, 49.22; H, 5.78; N, 3.53.

6-(1,2:4,5-Di-*O*-isopropylidene-D-*altro*-pentitol-1-yl)-2-bromopyridine (24)—A mixture of 21 (174 mg, 0.5 mmol) and TsOH (*ca.* 3 mg) in Me₂CO (3 ml) was stirred at room temperature for 72 h, and then concentrated *in vacuo*. The residue was chromatographed on a silica gel column using CHCl₃–EtOH (19:1, v/v) as the eluent to give 24 (130 mg, 70%) as a syrup. ¹H-NMR (CDCl₃) δ: 1.32 (3H, s, iso-Pr), 1.41 (3H, s, iso-Pr), 1.47 (3H, s, iso-Pr), 1.51 (3H, s, iso-Pr), 3.80 (1H, d, OH), 3.93—4.43 (5H, m, H-2′,3′,4′,5′,5′′), 5.06 (1H, d, H-1′, $J_{1',2'}$ = 7.4 Hz), 7.26—7.69 (3H, m, H-3,4,5). Acetylation of this product (100 mg) with Ac₂O in CH₂Cl₂ containing DMAP (3 mg) gave 6-(3-*O*-acetyl-1,2:4,5-di-*O*-isopropylidene-D-*altro*-pentitol-1-yl)-2-bromopyridine (25) (100 mg, 90%) as a foam. ¹H-NMR (CDCl₃) δ: 1.27 (3H, s, iso-Pr), 1.34 (3H, s, iso-Pr), 1.50 (6H, s, iso-Pr), 2.09 (3H, s, Ac), 3.79—4.55 (4H, m, H-2′,4′,5′,5′′), 5.08 (1H, d, H-1′, $J_{1',2'}$ = 7.9 Hz), 5.45 (1H, t, H-3′, $J_{2',3'}$ = $J_{3',4'}$ = 5.2 Hz), 7.32—7.67 (3H, m, H-3,4,5). *Anal.* Calcd for C₁₈H₂₄BrNO₆: C, 50.24; H, 5.62; N, 3.25. Found: C, 50.20; H, 5.72; N, 3.20.

6-(2,3:4,5-Di-*O*-isopropylidene-1-*O*-mesyl-D-*allo*-pentitol-1-yl)-2-bromopyridine (26)—To a mixture of 22 (520 mg, 1.34 mmol), DMAP (5 mg) and Et₃N (360 μ l, 2.6 mmol) in CH₂Cl₂ (5 ml) was added MsCl (180 μ l, 2.3 mmol), and the mixture was stirred at room temperature for 1 h. The mixture was concentrated, and the residue chromatographed on a silica gel column (CHCl₃) to give 26 (560 mg, 90%) as a syrup which became a low melting solid upon standing at room temperature. ¹H-NMR (CDCl₃) δ : 1.32 (12H, s, iso-Pr), 2.96 (3H, s, Ms), 3.82—4.51 (4H, m, H-3',4',5',5''), 4.84 (1H, dd, H-2', $J_{1',2'}$ =6.6, $J_{2',3'}$ =5.5 Hz), 5.79 (1H, d, H-1', $J_{1',2'}$ =6.6 Hz), 7.38—7.69 (3H, m, H-3,4,5).

In a similar manner, **23** was converted into 6-(2,3:4,5-di-O-isopropylidene-1-O-mesyl-D-altro-pentitol-1-yl)-2-bromopyridine (**27**) in 89% yield, mp 138—139 °C (from Et₂O). ¹H-NMR (CDCl₃) δ : 0.92 (3H, s, iso-Pr), 1.16 (3H, s, iso-Pr), 1.40 (3H, s, iso-Pr), 1.49 (3H, s, iso-Pr), 3.11 (3H, s, Ms), 3.86—4.18 (4H, m, H-3',4',5',5''), 4.99 (1H, dd, H-2', $J_{1',2'}$ =7.7, $J_{2',3'}$ =4.5 Hz), 5.89 (1H, d, H-1', $J_{1',2'}$ =7.7 Hz), 7.45—7.68 (3H, m, H-3,4,5). *Anal.* Calcd for C₁₇H₂₄BrNO₇S: C, 43.78; H, 5.19; N, 3.00. Found: C, 43.70; H, 5.31; N, 2.93.

6-(α-D-Ribofuranosyl)-2-bromopyridine (6)—Treatment of **27** (350 mg) with CF₃CO₂H/CHCl₃ (4:1, v/v) (5 ml) as described for the conversion of **4** to **6** afforded a product (172 mg, 79%) which was identical with **6** prepared earlier.

Acknowledgement This investigation was supported in part by funds from the National Cancer Institute, National Institutes of Health, U. S. Department of Health and Human Services (Grants No. CA-08748 and CA-33907). We wish to thank Dr. Frank Field and Dr. Brian Chait of Rockefeller University for recording mass spectra. We also thank Miss Anna Ptak for excellent technical assistance.

References and Notes

1) M. K. Kabat, K. W. Pankiewicz and K. A. Watanabe, J. Med. Chem., 30, 924 (1987).

- 2) H. Erlenmeyer and M. Leo, Helv. Chim. Acta, 16, 1381 (1933).
- 3) P. N. Craig, "Burger's Medicinal Chemistry," ed. by M. S. Wolff, Wiley-Interscience Publ., New York, 1980, Part 1, p. 331.
- 4) P. C. Srivastava, M. V. Pickering, L. B. Allen, D. G. Streeter, M. T. Campbell, J. T. Witkowski, R. W. Sidwell and R. K. Robins, J. Med. Chem., 20, 256 (1977).
- 5) M. Belmans, I. Vrijens, E. L. Esmans, J. A. Lepoivre, F. C. Alderweireldt, L. L. Wotring and L. B. Townsend, *Nucleosides Nucleotides*, 6, 245 (1987).
- 6) H. Ogura and H. Takahashi, J. Org. Chem., 39, 1374 (1974).
- 7) H. Ogura, H. Takahashi and T. Itoh, J. Org. Chem., 37, 72 (1972).
- 8) J-L. Imbach, Ann. N. Y. Acad. Sci., 255, 177 (1975); C. K. Chu, F. M. El-Kabbani and B. B. Thompson, Nucleosides Nucleotides, 3, 1 (1984).
- 9) It was reported that treatment of a 3-(1,2:4,5-di-O-isopropylidene-1,2,3,4,5-pentahydroxypentyl)pyrazole with acid only afforded the corresponding pentahydroxy derivative. Reacetonation of the pentahydroxy derivative to a mixture followed by mesylation afforded 1- and 3-mesylates. From this mixture, they obtained the furanosyl and 3-O-mesylpentyl derivatives. J. G. Buchanan, M. E. Chacon-Fuentes, A. Stobie and R. H. Wrightman, J. Chem. Soc., Perkin Trans. 1, 1980, 2561.