

Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Original article

Design, synthesis and antifungal activity of isosteric analogues of benzoheterocyclic *N*-myristoyltransferase inhibitors

Chunquan Sheng^a, Hui Xu^a, Wenya Wang^a, Yongbing Cao^a, Guoqiang Dong^a, Shengzheng Wang^a, Xiaoying Che^a, Haitao Ji^{b,c,d}, Zhenyuan Miao^a, Jianzhong Yao^a, Wannian Zhang^{a,*}

^a School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China

^b Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA

^c Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208-3113, USA

^d Center for Drug Discovery and Chemical Biology, Northwestern University, Evanston, IL 60208-3113, USA

ARTICLE INFO

Article history: Received 4 November 2009 Received in revised form 3 March 2010 Accepted 6 March 2010 Available online 12 March 2010

Keywords: Benzoxazole Indole N-Myristoyltransferase inhibitors Antifungal activity

1. Introduction

During the past two decades, the incidence of systemic fungal infections has been increasing dramatically due to the increasing number of immunocompromised hosts, such as patients undergoing anticancer chemotherapy or organ transplants, and patients with AIDS [1]. Clinically, candidosis, aspergillosis and cryptococcosis have been identified as three major fungal infections [2,3]. The mortality rate associated with invasive Candida is approximately 40% [4], whereas associated with invasive Aspergillus reaches 100% in solid organ transplant recipients [5]. In contrast to the large number of antibacterial antibiotics, there are very few antifungal agents that can be used for life-threatening fungal infections. These drugs are amphotericin B [6], 5-fluorocytosine, azoles (such as fluconazole and itraconazole) [7], and echinocandins (such as caspofungin and micafungin) [8]. However, current antifungal therapy is far from satisfaction, because currently available antifungal agents have several drawbacks, such as drug related toxicity, severe drug resistance, non-optimal pharmacokinetics, and serious drug-drug interactions. Moreover, severe resistance of antifungal

E-mail address: zhangwnk@hotmail.com (W. Zhang).

ABSTRACT

N-myristoyltransferase (NMT) has been a promising new target for the design of novel antifungal agents with new mode of action. A series of benzoxazole and indole derivatives were designed and synthesized as isosteric analogues of benzoheterocyclic NMT Inhibitors. *In vitro* antifungal assay indicated that the benzoxazole derivatives were far more potent than the indoles. Molecular docking studies revealed that the hydrogen bonding interaction between the benzoheterocyclic core and NMT might be essential in the orientation of the inhibitor to a proper position. The antifungal activity of benzoxazole derivative **8f** was comparable or superior to that of fluconazole, which can serve as a good starting point for further studies of structural diversity of the benzoheterocyclic NMT inhibitors.

© 2010 Elsevier Masson SAS. All rights reserved.

霐

drugs has also been observed [9]. Therefore, there is an emergent need to develop new antifungal drugs with novel modes of action.

Myristoyl-CoA: protein *N*-myristoyltransferase (NMT) is a cytosolic monomeric enzyme that catalyzes the transfer of the myristoyl group from myristoyl-CoA to the N-terminal glycine of a number of eukaryotic cellular and viral proteins [10,11]. Genetic experiments have shown that NMT is a promising target enzyme for the development of novel fungicidal drugs having a broad antifungal spectrum [12]. Up to now, peptidomimetic inhibitors [13–16], myristic acid analogues [17,18], benzofuran inhibitors [19–23] and benzothiazole inhibitors [23,24] have been reported to possess NMT inhibitory activity. Among them, only the benzofuran and benzothiazole inhibitors showed high selectivity and good antifungal activity. They can serve as a good starting point for the discovery of novel antifungal agents. Therefore, the extension of structure–activity relationships (SARs) of these NMT inhibitors is of great importance.

Analysis of the chemical structure of the benzofuran and benzothiazole inhibitors reveals that they share three important chemical elements (Fig. 1), i.e. a benzoheterocyclic core, a secondary amine at its C-4 side chain, a hydrophobic group attached to its C-2 position through various linkers. Crystal structure of NMT inhibitor complex [25] and our docking studies [26] found that the benzoheterocyclic core was located at the center of the active site,

^{*} Corresponding author. Tel./fax: +86 021 81871243.

^{0223-5234/\$ –} see front matter $\ensuremath{\mathbb{O}}$ 2010 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.ejmech.2010.03.007

Fig. 1. Representative structures of the benzofuran and benzothiazole NMT inhibitors.

surrounded by some hydrophobic residues, such as Tyr225, Tyr354 and Leu394. In an effort to investigate the importance of the benzoheterocyclic core on the antifungal activities, we designed and synthesized a series of benzoxazole and indole analogues as isosteric analogues of benzoheterocyclic NMT Inhibitors.

2. Chemistry

The synthetic route of benzoxazole derivatives was outlined in Scheme 1. 2-Nitroresorcinol (1) was reduced to 2-aminoresorcinol (2) by catalytic hydrogenation with H₂ and 10% Pd/C in EtOH in 99% yield. Reaction of 2 with ethyl chloroacetimidate gave 2-(chloromethyl)benzoxazol-4-ol (3). The hydroxyl group of 3 was protected by $(Boc)_2O$ to give 4. In the presence of NaH, treatment of 4 with various substituted phenols in DMF at room temperature provided the ethers 5a-h. After removing the protecting group of compounds 5a-h using CF₃COOH, alkylation of the resulting 6a-h with excess 1,3-dibromopropane gave bromopropanyl derivatives 7a-h in good yields. The target benzoxazoles 8a-h were prepared by reacting 7a-h with 3-(aminomethyl)pyridine in EtOH at 75 °C with moderate to good yields.

Starting from salicylaldehyde (**9**), the indole intermediate **12** was synthesized by a four-step procedure (Scheme 2). Initially, the hydroxyl group of **9** was protected by benzyl bromide. Then, compound **10** was condensed with ethyl azidoacetate to form an intermediate azide. By the thermal cycliation of the azide in toluene at reflux, indole **11** was obtained, which was deprotected to give key intermediate **12**. Treatment of **12** with excess 1,3-dibromopropane in the presence of potassium carbonate in DMF gave *O*-bromopropanyl derivative **13**. Amination of **13** with 3-(aminomethyl)pyridine at 75 °C in EtOH gave amino derivative **14** without affecting the ester group. The target compounds **16a–b** were prepared by Mitsunobu reaction of appropriate phenols with alcohol **15** [20], which was obtained by the reduction of ester **14** with LiAlH₄.

Compounds **20a**–**e** were prepared following the route depicted in Scheme 3. Ester **13** was hydrolyzed by lithium hydroxide, and the resulting acid **18** was converted into its acid chloride by treatment with oxalyl chloride, which was immediately subjected to the next anilide formation reaction. The resulting amides **19a**–**e** was heated to 75 °C with 3-aminomethylpyridine in EtOH to give **20a**–**e**.

Scheme 1. Reagents and conditions: a: H₂, 10% Pd/C, EtOH; b: ClCH₂C(=NH)OC₂H₅·HCl, 0 °C; c: Boc₂O, CH₂Cl₂; d: ROH, NaH, DMF; e: CF₃COOH, CH₂Cl₂; f: 1,3-dibromopropane, K₂CO₃, DMF, rt; g: 3-(Aminomethyl)pyridine, EtOH, 75 °C.

Scheme 2. Reagents and conditions: a: benzyl bromide, 70 °C, reflux; b; Ethyl azidoacetate, NaOEt, EtOH, -10 °C; c: toluene, 120 °C, reflux; d: H₂, 10% Pd/C, EtOH, 50 °C; e: 1,3-dibromopropane, K₂CO₃, DMF, rt; f: 3-(Aminomethyl)pyridine, EtOH, 75 °C, reflux; g: LiAlH₄, THF, 0 °C; h: TBP, ADDP, phenols, CH₂Cl₂, -20 °C to rt. i: CF₃COOH, benzenethiols, CH₂Cl₂, rt.

3. Pharmacology

In vitro antifungal activity was measured by means of the MIC using the serial dilution method in 96-well microtest plates.

Fluconazole and benzofuran NMT inhibitors (RO-09-4609 and RO-09-4879) were used as reference drugs. Test fungal strains were obtained from the ATCC or were clinical isolates. The MIC determination was performed according to the National Committee for Clinical

Scheme 3. Reagents and conditions: a: LiOH, HCl, THF/MeOH, 0 °C, 6 h; b: Oxalyl chloride, Et₃N, CH₂Cl₂, rt, 12 h; c: substituted-anilines, CH₂Cl₂, rt, 3 h; d: 3-(Aminomethyl)pyridine, EtOH, 75 °C, reflux, 12 h.

Laboratory Standards (NCCLS) recommendations. The detailed experimental protocols can be found in our previous studies [27].

4. Results and discussion

4.1. Antifungal activity of the benzoxazole derivatives

The antifungal activity of each compound was expressed as the minimal inhibitory concentration (MIC) that achieved 80% inhibition of the tested fungi. In vitro antifungal activity assay (Table 1) indicated that the benzoxazole derivatives 8a-h showed moderate to good potency against Candida spp. In general, these compounds were more active against Candida parasilosis and Candida tropicalis than Candida albicans. All the compounds showed better activity against C. tropicalis than fluconazole with their MIC values in the range of 1 μ g/mL to 0.0625 μ g/mL. Moreover, compound **8a** was more active against C. tropicalis (MIC = $0.0625 \ \mu g/mL$) than benzofuran inhibitor RO-09-4609 and RO-09-4879. On the C. parasilosis strain, compounds **8d** and **8f** (MIC = $0.25 \,\mu\text{g/mL}$) were more potent than fluconazole and RO-09-4609. However, they were 4-fold less potent than RO-09-4879. Most of the compounds showed moderate activity against C. albicans except for compound 8f. For *C. albicans*, the MIC value of compound 8f was 0.25 μg/mL, which was comparable to that of fluconazole. However, it was 2-fold less active than RO-09-4879. As compared with Candida spp., the inhibitory activity of the compounds against Cryptococcus neoformans was decreased. The MIC values for the most of the compounds were in the range of 16 μ g/mL to 64 μ g/mL. Moreover, most of the compounds were inactive against Aspergillus fumigatus and only compound 8g showed marginal inhibitory activity (MIC = $64 \mu g/mL$). Among the benzoxazole derivatives, compound 8f was the most potent one with broad antifungal spectrum, which was worthy of further optimization.

4.2. Antifungal activity of the indole derivatives

When the benzoxazole scaffold of compounds **8a–h** was changed to indole, the antifungal activity was decreased to the large extent (Table 2). The loss of the antifungal activity against deep fungal pathogens (i.e. *C. albicans, C. parasilosis* and *C. tropicalis*) was observed for compounds **16a** and **16b**. Only compound **16a** showed marginal activity against *C. neoformans* (MIC = 64 µg/mL). Furthermore, we tested the inhibitory activity of indole derivatives against dermatophytes. Compounds **16a** and **16b** showed moderate activity against *Microsporum gypseum* and *Trichophyton rubrum* with their MIC values in the range of 8 µg/mL to 128 µg/mL. We further varied the linker between the phenyl group and indole ring. The replacement of ether group by the thio-ether group led to the

Table 1

Antifungal in vitro activities of the benzoxazole derivatives	s (MIC ₈₀ , μ g mL ⁻¹).

Compounds	C. alb.	C. par.	C. tro.	C. neo.	A. fum.
8a	4	1	0.0625	16	>64
8b	16	1	1	16	>64
8c	16	1	0.25	64	>64
8d	1	0.25	1	16	>64
8e	64	4	1	64	>64
8f	0.25	0.25	0.25	64	>64
8g	16	1	1	16	64
8h	>64	4	0.25	>64	>64
RO-09-4609	4	4	1	64	>64
RO-09-4879	0.125	0.0625	0.125	0.5	16
FLZ	0.25	4	4	1	>64

^a Abbreviations: C. alb. Candida albicans; C. par. Candida parasilosis; C. tro. Candida tropicalis; C. neo. Cryptococcus neoformans; A. fum. Aspergillus fumigatus; FLZ: Fluconazole.

Table 2

Antifungal in vitro activities of the indole derivatives (MIC₈₀, µg mL⁻¹).^a

Compounds	M. gyp.	T. rub.	C. alb.	C. neo.	A. fum.
14	32	64	>128	>128	>128
16a	8	32	>128	64	>128
16b	32	128	>128	128	>128
17a	8	64	128	64	>128
17b	4	16	64	64	>128
20a	32	64	128	128	>128
20b	32	128	>128	>128	>128
20c	32	64	>128	>128	>128
20d	16	32	>128	128	>128
20e	2	128	>128	>128	>128
RO-09-4609	4	4	1	64	>64
RO-09-4879	2	1	0.125	0.5	16
FLZ	16	1	0.25	2	>64

^a Abbreviations: M. gyp. Microsporum gypseum; T. rub. Trichophyton rubrum; C. alb. Candida albicans; C. neo. Cryptococcus neoformans; A. fum. Aspergillus fumigatus; FLZ: Fluconazole.

slightly improvement of the antifungal activity. Compounds **17a** and **17b** show marginal activity against deep fungal pathogens. For the dermatophytes, their MIC values were in the range of 4 µg/mL to 64 µg/mL. They showed better inhibitory activity against *M. gypseum* than fluconazole. If the thio-ether group is replaced by the amide group (compounds **20a–e**), their antifungal activity against deep fungal pathogens is lost again. Most of compounds 20a-e only showed moderate activity against dermatophytes with MIC values in the range of 2 µg/mL to 64 µg/mL.

4.3. SARs of the benzoxazole and indole derivatives

In vitro antifungal assay indicated that the benzoheterocyclic core of the benzofuran and benzothiazole NMT inhibitors was important for the antifungal activity. When the benzofuran scaffold was replaced by benzoxazole, the antifungal was retained. The antifungal activity of compound 8f was slightly less than that of RO-09-4879. However, the antifungal activity of corresponding indole analogues was almost lost. For the benzoxazole derivatives, the substitutions on the phenyl ring were important for the antifungal activity. In general, a nitro group at position 3 of the phenyl group (compound **8h**) was unfavorable for the antifungal activity. When the phenyl group of compound **8c** was substituted with one or more fluorine atoms, the antifungal activity was increased. In most cases, the antifungal activity increased as the increase of the number of the fluorine atoms on the phenyl ring. For example, compound 8f (2,3,4-trifluoro derivative) was the most active compound with broad antifungal spectrum. However, fluorine substitutions at both position 2 and 6 of the phenyl group led to the decrease of the antifungal activity. For example, the movement of the fluorine atom from position 4 (compound 8d) to position 6 (compound 8e) resulted in obvious decrease of the antifungal activity. The similar results can be found in compounds 8f and 8g. For the indole derivatives, the variation of the linker of C-2 side chain can slightly improve the antifungal activity. The thio-ether group was more favorable than ether or amide group.

4.4. Molecular docking studies

In an attempt to correlate the SARs with the binding mode of the synthesized compounds, two representative compounds, **8f** and **16a**, were docked into the crystal structure of NMT from *C. albicans* (CaNMT) [25]. Our previous modeling studies have proved that the affinity method within InsightII 2000 software package [28] was an effective method to investigate the binding mode of the NMT inhibitors [26]. The docking results of compounds **8f** and **16a** were shown in Fig. 2. The overall conformation of compound **8f** in the

Fig. 2. Stereoview of the docking conformation of compound 8f (A) and 16a (B) in the active site of CaNMT. The residues interacting with compound 8f and 16a are shown and hydrogen bonds are displayed through red dotted lines (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

active site of CaNMT was very similar to that of the benzofuran inhibitors (Fig. 2A). The benzoxazole ring was located at the center of the active site, surrounded by some hydrophobic residues, such as Tyr225, Tyr354 and Leu394. The phenyl part of the benzoxazole ring could form π - π interaction with Tyr225. The substituted phenyl group of C-2 side chain formed hydrophobic interaction with Phe115 and Phe240. The terminal pyridinyl group C-4 side chain was surrounded by hydrophobic aromatic residues, such as Tyr119 and Phe123. Four hydrogen bonds were observed between compound 8f and CaNMT. The second amine group of C-4 side chain made a hydrogen bond with C-terminal carboxylate of Leu451, which is an important functional residue in the catalytic cycle of CaNMT [25]. The oxygen and nitrogen atom of the benzoxazole ring formed two hydrogen bonds with His227 and Tyr354, respectively. Another hydrogen bond was formed between the pyridine nitrogen of C-4 side chain and Tyr119 hydroxyl group. Among them, hydrogen bonding interactions with His227, Tyr119 and Leu451 of compound 8f are identical to those of benzofuran inhibitor RO-09-4879. In the crystal complex of CaNMT [25], the ether oxygen of C-2 side chain made a hydrogen bond with Asn392. However, this hydrogen bond was lost for compound 8f, mainly because of the additional hydrogen bond between benzoxazole nitrogen and Tvr354. As compared with compound 8f. RO-09-4879 has a C-3 methyl group, which can form additional van der Waals interaction with CaNMT. As a result, the interaction energy of RO-09-4879 with CaNMT was a little lower than compound 8f.

It is interesting that compound **16a** shared a completely different conformation in the active site of CaNMT (Fig. 2B). Instead of the C-4 secondary amine, the indole nitrogen formed a weak hydrogen bond with Leu451. As a result, important hydrogen bonding and hydrophobic interactions observed for compound **8f** were lost. The docking result is supported by the weak antifungal activity of compound **16a**. Based on the above docking results, it is supposed that the hydrogen bonding interactions between the benzoheterocyclic core and CaNMT might be essential for orienting the inhibitor to the correct direction in the active site.

5. Conclusion

In summary, we have extended the SARs of the benzofuran and benzothiazole NMT inhibitors. The importance of benzoheterocyclic core on the antifungal activity was investigated by the isostreric design of the benzoxazole and indole derivatives. In vitro antifungal assav indicated that the replacement of benzofuran scaffold by benzoxazole led to a slight decrease of the antifungal activity. However, the antifungal activity of the indole derivatives was almost lost. They only showed moderate activity against dermatophytes. The binding mode of the synthesized compounds was explored by flexible molecular docking, which indicated the importance of the hydrogen bonding interaction between the benzoheterocyclic core and NMT in the orientation of the inhibitor to a proper position. The benzoxazole derivative 8f showed good antifungal activity with broad spectrum, which was comparable or superior to fluconazole. Although compound 8f is slightly less potent than RO-09-4879, it is more drug-like with lower molecular weight and hydrophobicity, which can serve as a good starting point for further studies of structural diversity of the NMT inhibitors.

6. Experimental protocols

6.1. Chemistry

Melting points (mp) were determined by microscope melting point apparatus with aromatic temperature control system (XT4A). Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker 500 spectrometer with TMS as an internal standard and d_6 -DMSO as solvent. Chemical shifts (δ values) and coupling constants (I values) are given in ppm and Hz, respectively. ESI mass spectra were performed on an API-3000 LC-MS spectrometer. High-resolution mass spectroscopy measurements were performed on a Kratos-concep mass spectrometer under electron impact ionization (EI) conditions. Elemental analyses were performed with a MOD-1106 instrument and were consistent with theoretical values within $\pm 0.4\%$. TLC analysis was carried out on silica gel plates GF254 (Qindao Haiyang Chemical, China). Silica gel column chromatography was performed with Silica gel 60 G (Qindao Haiyang Chemical, China). Commercial solvents were used without any pretreatment.

6.1.1. Chemical synthesis of 2-aminobenzene-1,3-diol (2)

10% Pd–C (2.0 g) was added to a solution of 2-nitrobenzene-1,3diol (31.0 g, 0.2 mol) in EtOH (500 mL), then the reaction mixture was put into the high-pressure reaction vessel under H₂ atmosphere at 4 atm and stirred at room temperature for 10 h. The mixture was filtered though celite and the resulting solution was dried over anhydrous MgSO₄, concentrated under reduced pressure to give **2** as brown solid (49.5 g, 99% yield). ¹H NMR δ (ppm): 8.82 (s, 2H, OH), 6.21–6.27 (m, 3H, Ar-H), 3.82 (s, 2H, NH₂). MS (ESI) *m*/*z*: 126 (M + 1).

6.1.2. 2-(Chloromethyl)benzoxazol-4-ol (3)

Ethyl 2-chloroacetimidate hydrochloride (31.6 g, 0.26 mol) was added to a solution of compound **2** (25.0 g, 0.2 mol) in CH₂Cl₂ (500 mL) at 0 °C and the mixture was stirred for 2 h. Then, the reaction mixture was heated to room temperature and stirred for 24 h. After the reaction was completed, the resulting solution was diluted with CH₂Cl₂ (500 mL) and washed with water (500 mL × 3). The organic layer was separated, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 10:1, v/v) to give **3** as white crystalline solid (16.0 g, 43.6% yield). mp: 148–149 °C. ¹H NMR δ (ppm): 10.42 (s, 1H, OH), 7.23 (t, 1H, *J* = 8.0 Hz, Ar-C7H), 7.15 (d, 1H, *J* = 8.0 Hz, Ar-C6H), 6.77 (d, 1H, *J* = 8.0 Hz, Ar-C5H), 5.03 (s, 2H, CH₂Cl). MS (ESI) *m/z*: 184 (M + 1).

6.1.3. Tert-butyl 2-(chloromethyl)benzoxazol-4-yl carbonate (4)

Boc₂O (2.5 g, 11.48 mmol) and dimethylaminopyridine (DMAP, 2.5 mg, 0.02 mmol) was added to a solution of compound **3** (1.835 g, 10 mmol) in CH₂Cl₂ (50 mL). The reaction mixture was stirred at room temperature for 30 min. The organic layer was washed with 1N HCl (80 mL), H₂O (80 mL), saturated NaHCO₃ (80 mL) and saturated brine (80 mL), then dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give crude product as yellow liquid which was purified by silica gel column chromatography (hexane/EtOAc = 20:1, v/v) to give **4** as colorless oil (2.6 g, 91.7% yield). ¹H NMR δ (ppm): 7.72 (d, 1H, *J* = 8.0 Hz, Ar-C7H), 7.49 (t, 1H, *J* = 8.0 Hz, Ar-C6H), 7.29 (d, 1H, *J* = 7.5 Hz, Ar-C5H), 5.09 (s, 2H, CH₂Cl), 1.51 (s, 9H, *tert*-butyl). MS (ESI) *m/z*: 284 (M + 1).

6.1.4. General procedure for the synthesis of compounds **5a**-**h**

Substituted phenol (1.03 mmol) was added to a suspension of NaH (60%, 400 mg, 10 mmol) in dried DMF (20 mL) and was stirred for 30 min. Compound **4** (2.6 g, 9.2 mmol) was added to the reaction mixture and stirred for 3 h. The resulting mixture was diluted with EtOAc (100 mL) and washed with H₂O (100 mL × 2). The organic layer was separated, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 20:1, v/v) to give compounds **5a–h**.

6.1.5. General procedure for the synthesis of compounds **6a**-**h**

Trifluoroacetic acid (15 mL) was added to a solution of compound **5a**–**h** (5.85 mmol) in CH₂Cl₂ (15 mL). The reaction mixture was stirred at room temperature for 20 min. Trifluoroacetic acid was evaporated under reduced pressure. The residue was diluted with CH₂Cl₂ (100 mL), washed with H₂O (100 mL), saturated NaHCO₃ (100 mL), and saturated brine (100 mL). Then the organic layer was separated, dried over anhydrous Na₂SO₄, concentrated under reduced pressure to give crude product which was purified by silica gel column chromatography (hexane/EtOAc = 4:1, v/v) to give compounds **6a–h**.

6.1.6. General procedure for the synthesis of compounds 7a-h

Compounds **6a**–**h** (1.16 mmol), anhydrous K_2CO_3 (690 mg, 4 mmol) and 1,3-dichloropropane were suspended in dried DMF (15 mL). The reaction mixture was stirred at room temperature for 5 h, then was diluted with EtOAc (50 mL) and washed with H_2O (50 mL). The organic layer was separated, dried over anhydrous Na_2SO_4 and

concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 50:1, v/v) to give compounds 7a-h.

6.1.7. General procedure for the synthesis of compound **8a**-h

3-(Aminomethyl)pyridine (0.92 mmol) was added to a solution of compound **7a**–**h** (0.92 mmol) in dried DMF (15 mL). The reaction mixture was stirred at room temperature for 24 h, then was quenched by the addition of H₂O (100 mL) and extracted with EtOAc (100 mL). The organic layer was separated, dried over anhydrous Na₂SO₄, concentrated under reduced pressure. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH/Et₃N = 50:1:0.2, v/v) to give compounds **8a**–**h**

6.1.8. 3-{2-[(2-Fluorophenoxy)methyl]benzoxazol-4-yloxy}-N-(pyridin-3-ylmethyl) propan-1-amine (**8a**)

White solid (280 mg, 74.7% yield). mp: 47–48 °C. ¹H NMR δ (ppm): 8.62 (s, 1H, pyridinyl-C2H), 8.51 (d, 1H, J = 3.5 Hz, pyridinyl-C6H), 7.86 (d, 1H, J = 7.5 Hz, pyridinyl-C4H), 6.95–7.40 (m, 8H, Ar-H), 5.50 (s, 2H, CH₂OPh), 4.31 (t, 2H, J = 6.0 Hz, OCH₂CH₂CH₂CH₂NH), 3.98 (s, 2H, NHCH₂pyridinyl), 2.92 (t, 2H, J = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 2.04–2.10 (m, 2H, OCH₂CH₂CH₂NH). ¹³C NMR δ (ppm): 159.53 (C), 153.96 (C), 152.57 (C), 150.96 (C), 149.70 (CH), 148.50 (CH), 145.84 (C), 136.01 (CH), 135.01 (C), 130.38 (C), 126.39 (CH), 124.40 (CH), 123.39 (CH), 122.78 (CH), 116.46 (CH), 107.66 (CH), 103.74 (CH), 67.66 (CH₂), 64.30 (CH₂), 51.10 (CH₂), 46.25 (CH₂), 29.27 (CH₂). HRMS (*m*/*z*): calcd. for C₂₃H₂₂FN₃O₃: 407.1645; found: 407.1634. Anal. calcd. for C₂₃H₂₂FN₃O₃: C, 67.80; H, 5.44; N, 10.31. Found: C, 67.66; H, 5.45; N, 10.33.

6.1.9. 3-{2-[(4-Fluorophenoxy)methyl]benzoxazol-4-yloxy}-N-(pyridin-3-ylmethyl) propan-1-amine (**8b**)

Pale yellow solid (264 mg, 70.4% yield). mp: $48-49 \,^{\circ}$ C. ¹H NMR δ (ppm): 8.53 (s, 1H, pyridinyl-C2H), 8.42 (d, 1H, *J* = 5.0 Hz, pyridinyl-C6H), 7.74 (d, 1H, *J* = 7.5 Hz, pyridinyl-C4H), 6.94–7.36 (m, 8H, Ar-H), 5.40 (s, 2H, CH₂OPh), 4.29 (t, 2H, *J* = 6.0 Hz, O<u>CH</u>₂CH₂CH₂CH₂NH), 3.73 (s, 2H, NHCH₂Pyridinyl), 2.69 (t, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂MH), 1.95 (p, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 1.95 (p, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂CH₂NH). ¹³C NMR δ (ppm): 159.76 (C), 158.82 (C), 154.01 (C), 152.51 (C), 151.00 (C), 149.62 (CH), 148.37 (CH), 135.87 (CH), 135.41 (C), 130.37 (C), 126.32 (CH), 123.35 (CH), 116.14 (CH), 107.62 (CH), 103.60 (CH), 67.66 (CH₂), 63.51 (CH₂), 51.18 (CH₂), 46.27 (CH₂), 29.43 (CH₂). HRMS (*m*/*z*): calcd. for C₂₃H₂₂FN₃O₃: 407.1645; found: 407.1638. Anal. calcd. for C₂₃H₂₂FN₃O₃: C, 67.80; H, 5.44; N, 10.31. Found: C, 67.87; H, 5.46; N, 10.27.

6.1.10. 3-[2-(Phenoxymethyl)benzoxazol-4-yloxy]-N-(pyridin-3-ylmethyl)propan-1-amine (**8c**)

White solid (245 mg, 68.5% yield). mp: 48–49 °C. ¹H NMR δ (ppm): 8.54 (d, 1H, *J* = 1.5 Hz, pyridinyl-C2H), 8.44 (dd, 1H, *J* = 5.0 Hz, *J*2 = 1.5 Hz, pyridinyl-C6H), 7.76 (d, 1H, *J* = 7.5 Hz, pyridinyl-C4H), 6.94–7.34 (m, 9H, Ar-H), 5.42 (s, 2H, CH₂OPh), 4.29 (t, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 3.78 (s, 2H, NHCH₂Pyridinyl), 2.73 (t, 2H, *J* = 7.0 Hz, OCH₂CH₂CH₂CH₂NH), 1.97 (p, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 1.97 (p, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂CH₂NH). ¹³C NMR δ (ppm): 160.04 (C), 157.93 (C), 152.54 (C), 150.94 (C), 149.70 (CH), 148.48 (CH), 135.98 (CH), 135.01 (C), 130.45 (C), 129.59 (CH), 126.23 (CH), 123.37 (CH), 121.86 (CH), 114.89 (CH), 107.76 (CH), 103.69 (CH), 67.70 (CH₂), 62.78 (CH₂), 51.08 (CH₂), 46.24 (CH₂), 29.30 (CH₂). HRMS (*m*/*z*): calcd. for C₂₃H₂₃N₃O₃: 389.1739; found: 389.1750. Anal. calcd. for C₂₃H₂₃N₃O₃: C, 70.93; H, 5.95; N, 10.79. Found: C, 71.07; H, 5.92; N, 10.76.

6.1.11. 3-{2-[(2,4-Difluorophenoxy)methyl]benzoxazol-4-yloxy}-N-(pyridin-3-yl methyl)propan-1-amine (**8d**)

White solid (302 mg, 77.2% yield). mp: 48–49 °C. ¹H NMR δ (ppm): 8.52 (s, 1H, pyridinyl-C2H), 8.42 (dd, 1H, *J*1 = 3.5 Hz,

J2 = 1.0 Hz, pyridinyl-C6H), 7.73 (d, 1H, J = 7.5 Hz, pyridinyl-C4H), 6.95–7.39 (m, 7H, Ar-H), 5.48 (s, 2H, CH₂OPh), 4.29 (t, 2H, J = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 3.72 (s, 2H, NHCH₂Pyridinyl), 2.68 (t, 2H, J = 6.5 Hz, OCH₂CH₂CH₂NH), 1.94 (p, 2H, J = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 1.94 (p, 2H, J = 6.5 Hz, OCH₂CH₂CH₂CH₂NH). HRMS (m/z): calcd. for C₂₃H₂₁F₂N₃O₃: 425.1551; found: 425.1537. Anal. calcd. for C₂₃H₂₁F₂N₃O₃: C, 64.93; H, 4.98; N, 9.88. Found: C, 64.73; H, 4.99; N, 9.86.

6.1.12. 3-{2-[(2,6-Difluorophenoxy)methyl]benzoxazol-4-yloxy}-N-(pyridin-3-yl methyl)propan-1-amine (**8e**)

Pale yellow solid (221 mg, 56.4% yield). mp: 48–49 °C. ¹H NMR δ (ppm): 8.53 (d, 1H, *J* = 1.5 Hz, pyridinyl-C2H), 8.43 (dd, 1H, *J*1 = 5.0 Hz, *J*2 = 1.5 Hz, pyridinyl-C6H), 7.74 (d, 1H, *J* = 8.0 Hz, pyridinyl-C4H), 6.94–7.38 (m, 7H, Ar-H), 5.40 (s, 2H, CH₂OPh), 4.28 (t, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂NH), 3.73 (s, 2H, NHCH₂Pyridinyl), 2.51 (t, 2H, *J* = 7.0 Hz, OCH₂CH₂CH₂NH), 1.94 (m, 2H, OCH₂CH₂CH₂NH). ¹³C NMR δ (ppm): 159.21 (C), 156.89 (C), 154.91 (C), 152.54 (C), 150.83 (C), 149.65 (CH), 148.45 (CH), 136.27 (CH), 133.90 (C), 130.24 (C), 126.35 (CH), 123.90 (CH), 123.34 (CH), 112.16 (CH), 107.66 (CH), 103.58 (CH), 67.52 (CH₂), 50.53 (CH₂), 45.83 (CH₂), 28.66 (CH₂). HRMS (*m*/*z*): calcd. for C₂₃H₂₁F₂N₃O₃: C, 64.93; H, 4.98; N, 9.88. Found: C, 64.80; H, 4.97; N, 9.90.

6.1.13. N-(Pyridin-3-ylmethyl)-3-{2-[(2,3,4-trifluorophenoxy)methyl]benzoxazol-4-yloxy}propan-1-amine (**8f**)

White solid (310 mg, 76.1% yield). mp: 49–51 °C. ¹H NMR δ (ppm): 8.52 (s, 1H, pyridinyl-C2H), 8.41 (d, 1H, J = 3.5 Hz, pyridinyl-C6H), 7.73 (d, 1H, J = 7.5 Hz, pyridinyl-C4H), 6.95–7.37 (m, 6H, Ar-H), 5.55 (s, 2H, CH₂OPh), 4.29 (t, 2H, J = 6.0 Hz, O<u>CH₂CH₂CH₂CH₂NH), 3.73 (s, 2H, NHCH₂Pyridinyl), 2.68 (t, 2H, J = 6.5 Hz, OCH₂CH₂CH₂DH₂NH), 1.94 (p, 2H, J = 6.5 Hz, OCH₂CH₂CH₂NH). ¹³C NMR δ (ppm): 158.84 (C), 152.55 (C), 151.01 (C), 149.59 (CH), 148.34 (CH), 147.80 (C), 145.95 (C), 143.60 (C), 142.01 (C), 135.82 (CH), 135.55 (C), 130.28 (C), 126.60 (CH), 123.33 (CH), 110.51 (CH), 110.18 (CH), 107.62 (CH), 103.61 (CH), 67.68 (CH₂), 64.98 (CH₂), 51.24 (CH₂), 46.30 (CH₂), 29.47 (CH₂). HRMS (m/z): calcd. for C₂₃H₂₀F₃N₃O₃: 443.1457; found: 443.1440. Anal. calcd. for C₂₃H₂₀F₃N₃O₃: C, 62.30; H, 4.55; N, 9.48. Found: C, 62.42; H, 4.53; N, 9.45.</u>

6.1.14. N-(Pyridin-3-ylmethyl)-3-{2-[(2,4,6-trifluorophenoxy)-methyl]benzoxazol-4-yloxy}propan-1-amine (**8g**)

Pale yellow solid (256 mg, 62.8% yield). mp: 48–49 °C. ¹H NMR δ (ppm): 8.51 (d, 1H, J = 1.5 Hz, pyridinyl-C2H), 8.42 (dd, 1H, J1 = 5.0 Hz, J2 = 1.5 Hz, pyridinyl-C6H), 7.73 (d, 1H, J = 8.0 Hz, pyridinyl-C4H), 6.94–7.38 (m, 6H, Ar-H), 5.35 (s, 2H, CH₂OPh), 4.28 (t, 2H, J = 6.5 Hz, OCH₂CH₂CH₂NH), 3.72 (s, 2H, NHCH₂Pyridinyl), 2.66 (t, 2H, J = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 1.93 (p, 2H, J = 6.5 Hz, OCH₂CH₂CH₂NH), 1.93 (p, 2H, J = 6.5 Hz, OCH₂CH₂CH₂NH). ¹³C NMR δ (ppm): 158.82 (C), 156.79 (C), 154.85 (C), 152.51 (C), 150.94 (C), 149.41 (CH), 148.13 (CH), 135.70 (CH), 135.17 (C), 131.32 (C), 130.20 (C), 126.35 (CH), 123.14 (CH), 112.26 (CH), 107.57 (CH), 100.68 (CH), 67.65 (CH₂), 50.89 (CH₂), 45.99 (CH₂), 29.19 (CH₂). HRMS (m/z): calcd. for C₂₃H₂₀F₃N₃O₃: 443.1457; found: 443.1445. Anal. calcd. for C₂₃H₂₀F₃N₃O₃: C, 62.30; H, 4.55; N, 9.48. Found: C, 62.23; H, 4.56; N, 9.49.

6.1.15. 3-{2-[(3-Nitrophenoxy)methyl]benzoxazol-4-yloxy}-N-(pyridin-3-ylmethyl) propan-1-amine (**8h**)

Pale yellow solid (322 mg, 80.7% yield). mp: 48–49 °C. ¹H NMR δ (ppm): 8.53 (s, 1H, pyridinyl-C2H), 8.42 (d, 1H, *J*1 = 3.5 Hz, *J*2 = 1.5 Hz, pyridinyl-C6H), 7.94 (d, 1H, *J* = 2.0 Hz, pyridinyl-C4H), 6.95–7.88 (m, 8H, Ar-H), 5.61 (s, 2H, CH₂OPh), 4.30 (t, 2H, *J* = 6.5 Hz, O<u>CH₂CH₂CH₂NH), 3.73 (s, 2H, NHCH₂Pyridinyl), 2.69 (t, 2H, *J* = 7.0 Hz, OCH₂CH₂CH₂NH), 1.95 (p, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 1.95 (p, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), HRMS (*m*/*z*): calcd. for C₂₃H₂₂N₄O₅: 434.1590; found: 434.1603.</u>

Anal. calcd. for C₂₃H₂₂N₄O₅: C, 63.59; H, 5.10; N, 12.90. Found: C, 63.46; H, 5.11; N, 12.91.

6.1.16. 2-(Benzyloxy)benzaldehyde (10)

Salicylaldehyde (5.25 mL, 49.1 mmol) and benzyl bromide (6.45 mL, 54.0 mmol) were added to a suspension of K_2CO_3 (29.9 g, 216 mmol) in MeOH (300 mL) and CHCl₃ (600 mL) under N₂ atmosphere. Then, the reaction mixture was refluxed for 24 h and filtrated. The filtrate was concentrated under reduced pressure. 1N HCl (200 mL) was added to the residue. Then the mixture was extracted with CH₂Cl₂ (300 mL × 2). The combined organic layer was washed with saturated brine (300 mL × 2), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was recrystallized from absolute EtOH to give **10** as white needles (9.1 g, 87.5% yield). mp: 49–51 °C. MS (ESI) *m/z*: 213 (M + 1).

6.1.17. Ethyl 4-(benzyloxy)-1H-indole-2-carboxylate (11)

Compound **10** (15.8 g, 74 mmol) and a solution of α -ethyl 2azidoacetate (50 mL) in EtOH (20 mL) was added to a suspension of Na (7 g) in absolute EtOH (200 mL) at -10 °C. After the addition over a period of 2 h, the mixture was stirred for additional 8 h, cooled to room temperature, and then quenched by the addition of H₂O (1500 mL). The precipitate was filtrated, washed with H₂O (500 mL) and dried under vacuum. The crude product was dissolved in toluene (250 mL). The solution was heated to reflux at 125 °C for 3 h, then cooled to room temperature and filtrated. The filtrate was concentrated under reduced pressure. The residue was recrystallized from CHCl₃/hexane to give **11** as white needles (6.7 g, 30.6% yield). mp: 169–172 °C. ¹H NMR δ (ppm): 11.90 (s, 1H, indole-NH), 6.63–7.52 (m, 9H, Ar-H), 5.23 (s, 2H, OCH₂Ph), 4.32 (q, 2H, *J* = 7.0 Hz, COO<u>CH</u>₂CH₃), 1.33 (t, 3H, *J* = 7.0 Hz, COOCH₂<u>CH</u>₃). MS (ESI) *m/z*: 296 (M + 1).

6.1.18. Ethyl 4-hydroxy-1H-indole-2-carboxylate (12)

Compound **11** (3.0 g, 10.17 mol) and 10% Pd–C (300 mg) were suspended in EtOAc (200 mL) and EtOH (300 mL) under H₂ atmosphere (4 atm) and stirred at 50 °C for 6 h. The reaction mixture was filtered off using celite. The filtrate was concentrated under reduced pressure to give crude solid. The crude product was recrystallized from absolute EtOH (10 mL) to give **12** as grey solid (2.0 g, 96% yield). mp: 160–162 °C. ¹H NMR δ (ppm): 11.70 (s, 1H, indole-NH), 9.67 (s, 1H, OH), 6.38–7.20 (m, 4H, Ar-H), 4.32 (q, 2H, *J* = 7.0 Hz, COOCH₂CH₃), 1.33 (t, 3H, *J* = 7.0 Hz, COOCH₂CH₃). MS (ESI) *m*/*z*: 206 (M + 1).

6.1.19. Ethyl 4-(3-bromopropoxy)-1H-indole-2-carboxylate (13)

Compound **12** (2.05 g, 10 mmol), anhydrous K₂CO₃ (6.9 g, 50 mmol) and 1,3-dibromopropane (5 mL, 50 mmol) were suspended in DMF (25 mL). The reaction mixture was stirred at room temperature for 3 h, then was diluted with EtOAc (300 mL) and washed with H₂O (300 mL × 2). The combined organic layer was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 50:1, v/v) to give **13** as white solid (1.5 g, 42.8% yield). ¹H NMR δ (ppm): 11.90 (s, 1H, indole-NH), 6.55–7.17 (m, 4H, Ar-H), 4.33 (q, 2H, *J* = 7.0 Hz, COO<u>CH</u>₂CH₃), 4.20 (t, 2H, *J* = 6.0 Hz, O<u>CH</u>₂CH₂CH₂Br), 3.76 (t, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂Br), 2.33 (p, 2H, *J* = 6.0 Hz, OCH₂CH₂CH₂Br), 1.34 (t, 3H, *J* = 7.0 Hz, COOCH₂CH₃). MS (ESI) *m/z*: 327 (M + 1).

6.1.20. Ethyl 4-[3-(pyridin-3-ylmethylamino)propoxy]-1H-indole-2-carboxylate (**14**)

3-(Aminomethyl)pyridine (3 mL, 30 mmol) was added to a solution of compound **13** (1.61 g, 4.94 mmol) in absolute EtOH (30 mL). The reaction mixture was stirred at 70 $^{\circ}$ C for 24 h, then was cooled to room temperature and concentrated under reduced

pressure. The residue was diluted with EtOAc (50 mL) and H₂O (50 mL). The organic layer was separated, washed with saturated NH₄Cl (100 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford yellow oil, which was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 50:1 \rightarrow 20:1, v/v) to give **14** as grey solid (1.3 g, 74.6% yield). ¹H NMR δ (ppm): 11.88 (s, 1H, indole-NH), 8.56 (s, 1H, pyridinyl-C2H), 8.45 (m, 1H, pyridinyl-C6H), 7.77 (d, 1H, *J* = 7.5 Hz, pyridinyl-C4H), 7.33 (dd, 1H, *J*1 = 7.5 Hz, *J*2 = 2.5 Hz, pyridinyl-C5H), 6.52–7.17 (m, 4H, Ar-H), 4.33 (q, 2H, *J* = 7.0 Hz, COO<u>C</u>H₂CH₃), 4.16 (t, 2H, *J* = 6 Hz, O<u>C</u>H₂CH₂CH₂NH), 3.80 (s, 2H, NHCH₂Pyridinyl), 2.78 (t, 2H, *J* = 7.0 Hz, OCH₂CH₂CH₂NH), 1.35 (t, 3H, *J* = 7.0 Hz, COOCH₂CH₃). MS (ESI) *m/z*: 354 (M + 1).

6.1.21. {4-[3-(Pyridin-3-ylmethylamino)propoxy]-1H-indol-2-yl}-methanol (**15**)

LiAlH₄ (1.5 g, 39.5 mmol) was added in small portions to a solution of compound **14** (2.6 g, 7.37 mmol) in THF (30 mL) at 0 °C. The reaction mixture was stirred for 1 h. Then H₂O (1 mL) was added to get rid of excess LiAlH₄. The mixture was stirred for 1 h, dried with anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 50:1, v/v) to give **15** as yellow oil (1.4 g, 87.3%). ¹H NMR δ (ppm): 10.95 (s, 1H, indole-NH), 8.53 (s, 1H, pyridinyl-C2H), 8.43 (d, 1H, *J* = 4.5 Hz, pyridinyl-C6H), 7.74 (d, 1H, *J* = 8.0 Hz, pyridinyl-C4H), 7.31 (dd, 1H, *J*1 = 7.5 Hz, *J*2 = 5.0 Hz, pyridinyl-C5H), 6.22–6.91 (m, 4H, Ar-H), 5.16 (s, 1H, OH), 4.56 (s, 2H, CH₂OH), 4.11 (t, 2H, *J* = 6.0 Hz, OCH₂CH₂CH₂NH), 3.73 (s, 2H, NHCH₂Pyridinyl), 2.69 (t, 2H, *J* = 7.0 Hz, OCH₂CH₂CH₂NH), 1.92 (m, 2H, OCH₂CH₂CH₂NH). MS (ESI) *m*/*z*: 312 (M + 1).

6.1.22. General procedure for the synthesis of 3-{2-[(substituted phenoxy)methyl]-1H-indol-4-yloxy}-N-(pyridin-3-yl methyl)-propan-1-amine (**16a-b**)

1,1-(Azodicarbonyl)dipiperidine (0.9 mmol) was added to a solution of compound **15** (0.6 mmol), tri-*tert*-butylphosphine (TBP, 0.9 mmol) and substituted phenol (0.6 mmol) in dried CH₂Cl₂ (2 mL) which was cooled to -20 °C under N₂ atmosphere and stirred for 15min. The reaction mixture was stirred at room temperature for 24 h, then was poured into saturated NaHCO₃ (40 mL) and extracted with EtoAc (40 mL). The combined organic layer was washed with saturated brine (40 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 50:1 \rightarrow 20:1, v/v) to give compounds **16a–b**.

6.1.23. 3-{2-[(2,4-Difluorophenoxy)methyl]-1H-indol-4-yloxy}-N-(pyridine-3-ylmethyl) propan-1-amine (**16a**)

Yellow solid: (7.0 mg, 2.8% yield). ¹H NMR δ (ppm): 11.31 (s, 1H, indole-NH), 8.53 (s, 1H, pyridinyl-C2H), 8.42 (d, 1H, J = 3.5 Hz, pyridinyl-C6H), 7.74 (d, 1H, J = 7.5 Hz, pyridinyl-C4H), 6.47–7.38 (m, 8H, Ar-H), 5.22 (s, 2H, CH₂OPh), 4.13 (t, 2H, J = 6.0 Hz, OCH₂CH₂CH₂CH₂NH), 3.73 (s, 2H, NHCH₂Pyridinyl), 2.69 (t, 2H, J = 6.0 Hz, OCH₂CH₂CH₂CH₂NH), 1.93 (p, 2H, J = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 1.93 (p, 2H, J = 6.5 Hz, OCH₂CH₂CH₂CH₂NH). HRMS (m/z): calcd. for C₂₄H₂₃F₂N₃O₂: 423.1758; found: 423.1774. Anal. calcd. for C₂₄H₂₃F₂N₃O₂: C, 68.07; H, 5.47; N, 9.92. Found: C, 68.20; H, 5.48; N, 9.89.

6.1.24. 3-{2-[(4-Fluorophenoxy)methyl]-1H-indol-4-yloxy}-N-(pyridine-3-ylmethyl) propan-1-amine (**16b**)

Pale yellow solid (8.0 mg, 3.0% yield). ¹H NMR δ (ppm): 11.29 (s, 1H, indole-NH), 8.53 (s, 1H, pyridinyl-C2H), 8.42 (d, 1H, J = 3.5 Hz, pyridinyl-C6H), 7.74 (d, 1H, J = 7.5 Hz, pyridinyl-C4H), 7.31 (dd, 1H, J = 8.0 Hz, J2 = 5.0 Hz, pyridinyl-C5H), 6.44–7.15 (m, 8H, Ar-H), 5.15 (s, 2H, CH₂OPh), 4.13 (t, 2H, J = 6.5 Hz, OCH₂CH₂CH₂NH), 3.74 (s, 2H,

NHCH₂Pyridinyl), 2.70 (t, 2H, J = 7.0 Hz, OCH₂CH₂CH₂NH), 1.93 (p, 2H, J = 6.5 Hz, OCH₂CH₂CH₂NH). HRMS (m/z): calcd. for C₂₄H₂₄FN₃O₂: 405.1853; found: 405.1840. Anal. calcd. for C₂₄H₂₄FN₃O₂: C, 71.09; H, 5.97; N, 10.36. Found: C, 70.88; H, 5.98; N, 10.38.

6.1.25. General procedure for the synthesis of compounds 17a-b

Substituted thiol (0.2 mmol) was added to a stirring solution of compound **15** (0.2 mmol) and trifluoroacetic acid (0.2 mL) in dried CH₂Cl₂ (5 mL). The reaction mixture was stirred at room temperature for 2 h, then was diluted with CH₂Cl₂ (30 mL), washed with 0.1 mol/L NaOH (30 mL), H₂O (30 mL) and saturated brine (30 mL). The organic layer was separated, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 50:1, v/v) to give compounds **17a–b**.

6.1.26. [3-(2-(Phenylthiomethyl)-1H-indol-4-yloxy)]-N-(pyridine-3-ylmethyl)propan-1-amine (**17a**)

Colorless oil (22 mg, 27.5%). ¹H NMR δ (ppm): 11.34 (s, 1H, indole-NH), 8.52 (s, 1H, pyridinyl-C2H), 8.42 (d, 1H, *J* = 3.5 Hz, pyridinyl-C6H), 7.74 (d, 1H, *J* = 7.5 Hz, pyridinyl-C4H), 6.50–7.39 (m, 10H, Ar-H), 4.68 (d, 1H, *J* = 13.5 Hz, CH₂S), 4.45 (d, 1H, *J* = 13.5 Hz, CH₂S), 4.12–4.15 (m, 2H, OCH₂CH₂CH₂NH), 3.73 (s, 2H, NHCH₂Pyridinyl), 2.69–2.73 (m, 2H, OCH₂CH₂CH₂NH), 1.93 (t, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂NH). HRMS (*m*/*z*): calcd. for C₂₄H₂₅N₃OS: 403.1718; found: 403.1705. Anal. calcd. for C₂₄H₂₅N₃OS: C, 71.43; H, 6.24; N, 10.41. Found: C, 71.57; H, 6.22; N, 10.39.

6.1.27. 3-{2-[(2,6-Dichlorophenylthio)methyl]-1H-indol-4-yloxy}-N-(pyridine-3-yl methyl)propan-1-amine (**17b**)

Colorless oil (18 mg, 19% yield). ¹H NMR δ (ppm): 11.22 (s, 1H, indole-NH), 8.52 (s, 1H, pyridinyl-C2H), 8.42 (d, 1H, J = 4.5 Hz, pyridinyl-C6H), 7.73 (d, 1H, J = 7.5 Hz, pyridinyl-C4H), 7.54 (d, 1H, J = 8.0 Hz, pyridinyl-C5H), 6.41–7.40 (m, 7H, Ar-H), 4.54 (d, 1H, J = 13.5 Hz, CH₂S), 4.31 (d, 1H, J = 13.5 Hz, CH₂S), 4.10–4.14 (m, 2H, O<u>CH₂CH₂CH₂NH), 3.72 (s, 2H, NHCH₂Pyridinyl), 2.69 (d, 2H, J = 2.5 Hz, OCH₂CH₂CH₂NH), 1.93 (p, 2H, J = 6.0 Hz, OCH₂CH₂CH₂CH₂NH), 1.93 (p, 2H, J = 6.0 Hz, OCH₂CH₂CH₂CH₂NH), HRMS (m/z): calcd. for C₂₄H₂₃Cl₂N₃OS: 471.0939; found: 471.0957. Anal. calcd. for C₂₄H₂₃Cl₂N₃OS: C, 61.02; H, 4.91; N, 8.89. Found: C, 60.89; H, 4.92; N, 8.90.</u>

6.1.28. 4-(3-Bromopropoxy)-1H-indole-2-carboxylic acid (18)

LiOH \cdot H₂O (560 mg, 13.3 mmol), H₂O (35 mL) and MeOH (12 mL) were added to a solution of compound **13** (1.63 g, 5.0 mmol) in THF (45 mL) at 0 °C. The reaction mixture was stirred at room temperature for 6 h and was added 1N HCl (11 mL). After removing the solvent under reduced pressure, the residue was extracted with EtOAc (120 mL). The EtOAc solution was washed with saturated brine (120 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford crude solid, which was washed with haxen/EtOAc (4:1, v/v) and dried under vacuum to give **18** as grey solid (1.32 g, 88.6% yield). ¹H NMR δ (ppm): 12.79 (s, 1H, COOH), 11.75 (s, 1H, indole-NH), 6.54–7.14 (m, 4H, Ar-H), 4.20 (t, 2H, J = 6.0 Hz, OCH₂CH₂CH₂Br), 3.75 (t, 2H, J = 6.5 Hz, OCH₂CH₂CH₂Br), 2.33 (p, 2H, J = 6.0 Hz, OCH₂CH₂CH₂Br). MS (ESI) m/z: 299 (M + 1).

6.1.29. General procedure for the synthesis of compounds 19a - e

Oxalyl chloride (0.5 mL) and a drop of triethylamine were added to a stirring solution of **18** (0.67 mmol) in dried CH_2Cl_2 (5 mL). The reaction mixture was stirred at room temperature for 12 h, and then was added substituted aniline (0.67 mol). The mixture was stirred at room temperature for 3 h and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (CH₂Cl₂) to give compounds **19a–e**.

6.1.30. General procedure for the synthesis of compounds 20a-e

3-(Aminomethyl)pyridine (0.28 mol) was added to a solution of compound **19a–e** (0.28 mmol) in absolute EtOH (5 mL). The reaction mixture was stirred at 80 °C for 12 h and evaporated under reduced pressure. The residue was dissolved in EtOAc (50 mL) and H₂O (50 mL). The organic layer was separated, washed with saturated NH₄Cl (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 20:1, v/v) to give compounds **20a–e**.

6.1.31. N-(3-Fluorophenyl)-4-[3-(pyridin-3-ylmethylamino)propoxy]-1H-indole-2-carboxamide (**20a**)

Yellow solid (30 mg, 25% yield). ¹H NMR δ (ppm): 11.77 (s, 1H, indole-NH), 10.35 (s, 1H, CONH), 8.55 (s, 1H, pyridinyl-C2H), 8.42 (d, 1H, J = 4.5 Hz, pyridinyl-C6H), 7.81 (d, 1H, J = 7.0 Hz, pyridinyl-C4H), 6.54–7.75 (m, 9H, Ar-H), 4.18 (t, 2H, J = 6.0 Hz, OCH₂CH₂CH₂CH₂NH), 3.75 (s, 2H, NHCH₂Pyridinyl), 2.73 (t, 2H, J = 6.5 Hz, OCH₂CH₂CH₂NH), 1.98 (p, 2H, J = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 1.98 (p, 2H, J = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 1.98 (p, 2H, J = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), HRMS (m/z): calcd. for C₂₄H₂₃FN₄O₂: 418.1805; found: 418.1817. Anal. calcd. for C₂₄H₂₃FN₄O₂: C, 68.88; H, 5.54; N, 13.39. Found: C, 69.01; H, 5.52; N, 13.40.

6.1.32. N-(4-Chlorophenyl)-4-[3-(pyridin-3-ylmethylamino)-propoxy]-1H-indole-2-carboxamide (**20b**)

Yellow solid (36 mg, 30% yield). ¹H NMR δ (ppm): 11.74 (s, 1H, indole-NH), 10.29 (s, 1H, CONH), 8.54 (s, 1H, pyridinyl-C2H), 8.42 (d, 1H, J = 4.5 Hz, pyridinyl-C6H), 7.86 (d, 1H, J = 9.0 Hz, pyridinyl-C4H), 6.53–7.75 (m, 9H, Ar-H), 4.18 (t, 2H, J = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 3.75 (s, 2H, NHCH₂Pyridinyl), 2.73 (t, 2H, J = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 1.98 (p, 2H, J = 6.0 Hz, OCH₂CH₂CH₂CH₂NH), 1.98 (p, 2H, J = 6.0 Hz, OCH₂CH₂CH₂CH₂NH), HRMS (m/z): calcd. for C₂₄H₂₃ClN₄O₂: C, 66.28; H, 5.33; N, 12.88. Found: C, 66.08; H, 5.32; N, 12.91.

6.1.33. N-Phenyl-4-[3-(pyridin-3-ylmethylamino)propoxy]-1H-indole-2-carboxamide (**20c**)

Pale yellow solid (32 mg, 29% yield). ¹H NMR δ (ppm): 11.71 (s, 1H, indole-NH), 10.17 (s, 1H, CONH), 8.54 (s, 1H, pyridinyl-C2H), 8.42 (d, 1H, *J* = 4.5 Hz, pyridinyl-C6H), 7.82 (d, 1H, *J* = 8.5 Hz, pyridinyl-C4H), 6.53–7.75 (m, 10H, Ar-H), 4.18 (t, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 3.76 (s, 2H, NHCH₂Pyridinyl), 2.75 (t, 2H, *J* = 6.0 Hz, OCH₂CH₂CH₂CH₂NH), 1.99 (p, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), 1.99 (p, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂CH₂NH), HRMS (*m*/*z*): calcd. for C₂₄H₂₄N₄O₂: 400.1899; found: 400.1516. Anal. calcd. for C₂₄H₂₄N₄O₂: C, 71.98; H, 6.04; N, 13.99. Found: C, 71.83; H, 6.03; N, 14.01.

6.1.34. N-(3,4-Difluorophenyl)-4-[3-(pyridin-3-ylmethylamino)-propoxy]-1H-indole-2-carboxamide (**20d**)

Yellow solid (39 mg, 32% yield). ¹H NMR δ (ppm): 11.79 (s, 1H, indole-NH), 10.38 (s, 1H, CONH), 8.55 (s, 1H, pyridinyl-C2H), 8.43 (d, 1H, *J* = 3.5 Hz, pyridinyl-C6H), 7.98–8.02 (m, 1H, *J* = 8.5 Hz, pyridinyl-C4H), 6.54–7.76 (m, 8H, Ar-H), 4.18 (t, 2H, *J* = 6.0 Hz, O<u>CH</u>₂CH₂CH₂CH₂NH), 3.76 (s, 2H, NHCH₂Pyridinyl), 2.74 (t, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂NH), 1.99 (p, 2H, *J* = 6.5 Hz, OCH₂CH₂CH₂NH), HRMS (*m*/*z*): calcd. for C₂₄H₂₂F₂N₄O₂: 436.1711; found: 436.1700. Anal. calcd. for C₂₄H₂₂F₂N₄O₂: C, 66.05; H, 5.08; N, 12.84. Found: C, 66.18; H, 5.06; N, 12.42.

6.1.35. N-(2-Chlorophenyl)-4-[3-(pyridin-3-ylmethylamino)propoxy]-1H-indole-2-carboxamide (**20e**)

Flavo-green solid (22 mg, 18% yield). ¹H NMR δ (ppm): 11.75 (s, 1H, indole-NH), 10.04 (s, 1H, CONH), 8.54 (s, 1H, pyridinyl-C2H), 8.42 (d, 1H, J = 3.5 Hz, pyridinyl-C6H), 7.75 (d, 1H, J = 8.0 Hz, pyridinyl-C4H), 6.53–7.59 (m, 9H, Ar-H), 4.18 (t, 2H, J = 6.0 Hz,

O<u>CH</u>₂CH₂CH₂NH), 3.76 (s, 2H, NHCH₂Pyridinyl), 2.74 (t, 2H, J = 7.0 Hz, OCH₂CH₂CH₂NH), 1.98 (p, 2H, J = 6.5 Hz, OCH₂CH₂CH₂NH). HRMS (m/z): calcd. for C₂₄H₂₃ClN₄O₂: 434.1510; found: 434.1494. Anal. calcd. for C₂₄H₂₃ClN₄O₂: C, 66.28; H, 5.33; N, 12.88. Found: C, 66.01; H, 5.34; N, 12.90.

6.2. Molecular docking

The crystallographic coordinates of CaNMT [25] (0.32 Å resolution, $R_{cryst} = 0.284$) were obtained from the Brookheaven Protein Databank as entries 11YL. The chemical structures of compounds **8f** and **16a** were built by InsightII 2000 software package. Followed by energy minimization, compounds **8f** and **16a** were docked into the active site of CaNMT using the Affinity module within InsightII 2000 software package. The detailed docking protocols are similar to that in our previous modeling studies on CaNMT [26].

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 30973640), Shanghai Rising-Star Program (Grant Nos. 09QA1407000), National Major Special Project for the Creation of New Drugs (Grant Nos. 2009ZX09301-011) and Shanghai Leading Academic Discipline Project (Project Nos. B906).

Appendix. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ejmech.2010.03.007.

References

- [1] S.K. Fridkin, W.R. Jarvis, Clin. Microbiol. Rev. 9 (1996) 499-511.
- [2] J.P. Latge, Clin. Microbiol. Rev. 12 (1999) 310-350.
- [3] J.N. Steenbergen, A. Casadevall, J. Clin. Microbiol. 38 (2000) 1974–1976.
- [4] M.B. Edmond, S.E. Wallace, D.K. McClish, M.A. Pfaller, R.N. Jones, R.P. Wenzel, Clin. Infect. Dis 29 (1999) 239–244.
- [5] A. Minari, R. Husni, R.K. Avery, D.L. Longworth, M. DeCamp, M. Bertin, R. Schilz, N. Smedira, M.T. Haug, A. Mehta, S.M. Gordon, Transpl. Infect. Dis 4 (2002) 195–200.
- [6] H.A. Gallis, R.H. Drew, W.W. Pickard, Rev. Infect. Dis. 12 (1990) 308–329.
- [7] D.J. Sheehan, C.A. Hitchcock, C.M. Sibley, Clin. Microbiol. Rev. 12 (1999) 40–79.
- [8] D.W. Denning, J. Antimicrob. Chemother, 49 (2002) 889–891.
- [9] I.A. Casalinuovo, P. Di Francesco, E. Garaci, Eur. Rev. Med. Pharmacol. Sci. 8 (2004) 69–77.
- [10] J.A. Boutin, Cell. Signal. 9 (1997) 15-35.
- [11] T.A. Farazi, G. Waksman, J.I. Gordon, J. Biol. Chem. 276 (2001) 39501-39504.
- [12] N.H. Georgopapadakou, Expert Opin. Investig. Drugs 11 (2002) 1117-1125.
- [13] B. Devadas, S.K. Freeman, C.A. McWherter, N.S. Kishore, J.K. Lodge, E. Jackson-Machelski, J.I. Gordon, J.A. Sikorski, J. Med. Chem. 41 (1998) 996–1000.
- [14] B. Devadas, S.K. Freeman, M.E. Zupec, H.F. Lu, S.R. Nagarajan, N.S. Kishore, J.K. Lodge, D.W. Kuneman, C.A. McWherter, D.V. Vinjamoori, D.P. Getman, J.I. Gordon, J.A. Sikorski, J. Med. Chem. 40 (1997) 2609–2625.
- [15] B. Devadas, M.E. Zupec, S.K. Freeman, D.L. Brown, S. Nagarajan, J.A. Sikorski, C. A. McWherter, D.P. Getman, J.I. Gordon, J. Med. Chem. 38 (1995) 1837–1840.
- [16] S.R. Nagarajan, B. Devadas, M.E. Zupec, S.K. Freeman, D.L. Brown, H.F. Lu, P. P. Mehta, N.S. Kishore, C.A. McWherter, D.P. Getman, J.I. Gordon, J.A. Sikorski, J. Med. Chem. 40 (1997) 1422–1438.
- [17] L.A. Paige, G.Q. Zheng, S.A. DeFrees, J.M. Cassady, R.L. Geahlen, Biochemistry 29 (1990) 10566–10573.
- [18] K. Parang, E.E. Knaus, L.I. Wiebe, S. Sardari, M. Daneshtalab, F. Csizmadia, Arch. Pharm. (Weinheim) 329 (1996) 475–482.
- [19] H. Ebiike, M. Masubuchi, P. Liu, K. Kawasaki, K. Morikami, S. Sogabe, M. Hayase, T. Fujii, K. Sakata, H. Shindoh, Y. Shiratori, Y. Aoki, T. Ohtsuka, N. Shimma, Bioorg. Med. Chem. Lett. 12 (2002) 607–610.
- [20] K. Kawasaki, M. Masubuchi, K. Morikami, S. Sogabe, T. Aoyama, H. Ebiike, S. Niizuma, M. Hayase, T. Fujii, K. Sakata, H. Shindoh, Y. Shiratori, Y. Aoki, T. Ohtsuka, N. Shimma, Bioorg. Med. Chem. Lett. 13 (2003) 87–91.
- [21] M. Masubuchi, H. Ebiike, K. Kawasaki, S. Sogabe, K. Morikami, Y. Shiratori, S. Tsujii, T. Fujii, K. Sakata, M. Hayase, H. Shindoh, Y. Aoki, T. Ohtsuka, N. Shimma, Bioorg. Med. Chem. 11 (2003) 4463–4478.
- [22] M. Masubuchi, K. Kawasaki, H. Ebiike, Y. Ikeda, S. Tsujii, S. Sogabe, T. Fujii, K. Sakata, Y. Shiratori, Y. Aoki, T. Ohtsuka, N. Shimma, Bioorg. Med. Chem. Lett. 11 (2001) 1833–1837.

- [23] K. Yamazaki, Y. Kaneko, K. Suwa, S. Ebara, K. Nakazawa, K. Yasuno, Bioorg. Med. Chem. 13 (2005) 2509–2522.
- [24] S. Ebara, H. Naito, K. Nakazawa, F. Ishii, M. Nakamura, Biol. Pharm. Bull. 28 (2005) 591-595.
- S. Sogabe, M. Masubuchi, K. Sakata, T.A. Fukami, K. Morikami, Y. Shiratori,
 H. Ebiike, K. Kawasaki, Y. Aoki, N. Shimma, A. D'Arcy, F.K. Winkler, D.
 W. Banner, T. Ohtsuka, Chem. Biol. 9 (2002) 1119–1128.

- [26] C. Sheng, J. Zhu, W. Zhang, M. Zhang, H. Ji, Y. Song, H. Xu, J. Yao, Z. Miao, Y. Zhou, J. Lu, Eur. J. Med. Chem. 42 (2007) 477–486.
 [27] C. Sheng, W. Zhang, H. Ji, M. Zhang, Y. Song, H. Xu, J. Zhu, Z. Miao, Q. Jiang, J. Yao, Y. Zhou, J. Lu, J. Med. Chem. 49 (2006) 2512–2525.
 [28] Insight II, 2000, Accelrys Inc., 10188 Telesis Court, Suite 100, San Diego, CA 92121, Phone: (858) 799-5000, fax: (858) 799-5100. Website: http://www. accelrys.com/.