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Artificial molecular machines have received much attention
in recent years because of their potential application in the
creation of nanometer-scale molecular devices.[1, 2] A wide
variety of molecular machines such as shuttles,[3a] rotors,[3b]

muscles,[3c] ratchets,[3d] pistons and cylinders,[3e] scissors,[3f] and
elevators[3g] have been reported. Nevertheless, the design and
synthesis of new molecular machines that are reminiscent of
macroscopic machines would further widen the scope of this
area of chemistry.

Cucurbit[8]uril (CB[8]),[4] a member of the host family
cucurbit[n]uril, which has a cavity that is similar to that of g-
cyclodextrin, exhibits remarkable host–guest properties
including the encapsulation of a hetero-guest-pair inside the
cavity.[5] For example, it encapsulates methyl viologen (MV2+)
and 2,6-dihydroxynaphthalene (Np(OH)2) inside the cavity to
form the stable 1:1:1 complex 12+. Formation of the complex is
driven by the markedly enhanced charge-transfer (CT)
interaction between the electron-deficient and electron-rich
guest molecules inside the hydrophobic cavity of CB[8].[5a]

This discovery led us to build several novel supramolecular
assemblies such as supramolecular amphiphiles that led to
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vesicles,[5b] molecular loops,[5c] supramolecular polymers on
surfaces,[5d] and molecular necklaces[5e] by exploiting the host-
stabilized CT interactions. Despite the progress in the
construction of self-assembly systems, the redox properties
of the host-stabilized CT complexes, in particular, the inter-
play between the redox process and the exchange of the guest
within the host-stabilized CT complexes have not been
reported. These properties may provide a novel operating
principle of molecular machines or stimuli-responsive mate-
rials. Herein we report the redox-coupled guest-exchange
properties of CB[8]-stabilized CT complexes which demon-
strate the interconversion of hetero- and homo-guest-pair
inclusion in a molecular host triggered by an external stimulus
(Scheme 1). We also report a molecular loop lock, a novel
redox-driven molecular machine based on this phenomenon.

Treatment of a mixture of methyl viologen (MV2+) and
the ternary complex 12+ (1:1) with a reducing agent such as
sodium dithionite (Na2S2O4) results in a drastic change in the
UV/Vis spectrum. The appearance of new absorption bands
at l= 365, 540, and 884 nm (see Supporting Information)
supports the near-quantitative formation of the 2:1 inclusion
complex (MV+C)2�CB[8] (22+)[6] and free Np(OH)2
(Scheme 1). Introduction of O2 into the solution regenerates
12+ and MV2+. This behavior is confirmed by UV/Vis and
NMR spectroscopy, and this result demonstrates the rever-
sible conversion of hetero- and homo-guest-pair inclusion
inside CB[8] triggered by a redox stimulus.

The redox-coupled guest-exchange process was further
investigated by cyclic voltammetry (Figure 1). Methyl viol-
ogen (MV2+) shows two reversible waves that correspond to
the redox couples MV2+/MV+C and MV+C/MV0 (Figure 1a).
Compared to MV2+, 12+ exhibits a moderate negative shift of
the first reduction peak and a large negative shift of the
second reduction peak (Figure 1b). Furthermore, the oxida-
tion process that corresponds to the first reduction process of
12+ shows two peaks at �0.71 V and �0.50 V (vs SCE—
saturated calomel electrode), the latter of which is almost the
same as that for the oxidation of 22+.[6] With increasing scan
rates the oxidation peak at �0.71 V increases, whereas the
peak at �0.50 V decreases (see Supporting Information), as
often seen in processes that involve electron transfer followed
by a chemical reaction. The addition ofMV2+ (1 equiv) results
in a small positive shift of the first reduction wave, disappear-
ance of the oxidation peak at �0.71 V, and concomitant

increase of the peak at �0.50 V (Figure 1c).[7] A spectroelec-
trochemical study shows that the absorption spectrum of the
species generated by the electrolysis of 12+ (applied potential,
�0.85 V vs SCE, in the presence or absence of MV2+

(1 equiv)) is essentially identical to that of 22+ (see Supporting
Information). Taken together, these results suggest that the

reduction of 12+ initially generates the one-
electron-reduced species 1+C, which contains
MV+C and Np(OH)2 encapsulated in CB[8],
and then reacts with free MV+C to undergo the
rapid guest exchange that leads to 22+ and free
Np(OH)2 (see Supporting Information). Note
that the regeneration of 12+ and MV2+ by the
oxidation of 22+ and Np(OH)2 probably does
not follow the reverse pathway because the 1:1
mixture of 22+ and Np(OH)2 is thermodynami-
cally far more stable than the 1:1 mixture of 1+C
and MV+C. Instead, it is more likely to occur
through another pathway that involves the
initial generation of the 1:1 complex
MV2+�CB[8] by the oxidation of 22+, as we

Scheme 1. Interconversion of hetero- and homo-guest-pair inclusion in CB[8] triggered by a redox
stimulus. MV=methyl viologen, Np(OH)2=2,6-dihydroxynaphthalene, CB[8]=cucurbit[8]uril.

Figure 1. Cyclic voltammograms of a) MV2+ (0.5 mm) and b) 12+

(0.5 mm) in the absence of free MV2+, and c) 12+ (0.5 mm) in the pres-
ence of free MV2+ (1 equiv) in phosphate buffer solution (0.1m,

pH 7.0). Scan rate=100 mVs�1; – – – different scan rate.
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demonstrated previously,[6] which then reacts with free
Np(OH)2 to produce 1

2+ (see Supporting Information).
The discovery of the redox-coupled guest-exchange

process prompted us to design and synthesize a redox-
driven molecular machine that behaves as a molecular loop
lock, which can be switched on and off (locked and unlocked)
by means of a key and a redox stimulus (Schemes 2 and 3).
The guest molecule 33+, which contains a naphthalen-2-yloxy
(Np) unit and a viologen unit linked to each other by a flexible

tether as well as a bulky cationic unit at the terminal,[8] was
synthesized in four steps (see Supporting Information).
Treatment of 33+ with CB[8] (1 equiv) in water resulted in
the exclusive formation of the stable 1:1 complex 43+ through
the formation of the intramolecular CT complex between the
Np and viologen units inside CB[8], as confirmed by ESI-MS
and UV/Vis and NMR spectroscopy analyses (see Supporting
Information). In particular, the upfield-shifted signals for the
protons of the Np and viologen units and the downfield-
shifted signals for the protons of the linker and cationic
terminal in the 1H NMR spectrum of 43+ (see Supporting
Information) are consistent with the formation of a molecular
loop[5c] with a “closed” or “locked” conformation as illus-
trated in Scheme 2.

The 1H NMR spectrum of 43+ is not affected by the
addition of MV2+ (1 equiv) which indicates that the 1:1 host–
guest complex formed by the intramolecular CT interaction is
much more stable than the ternary complex formed by the
intermolecular CT interaction between the Np unit of 43+ and
MV2+ inside CB[8]. However, treatment of a solution
containing 43+ and MV2+ (1 equiv) with Na2S2O4 results in
the formation of the ternary complex 53+ (Scheme 2) in which
the one-electron-reduced viologen unit of 32+C interacts with
MV+C inside CB[8]. The formation of this complex was
confirmed by the appearance of new absorption bands at l=
368, 550, and 890 nm, which are characteristic of a CB[8]-
stabilized viologen radical-cation dimer (Figure 2).[9,10] Owing
to the paramagnetic nature of 53+, the signals for the Np unit
are broad, but are clearly observed by NMR spectroscopy
(Figure 3).[10] Furthermore, the chemical shift values (d� 7–

8 ppm) for the protons of 53+ are close to those for free 33+

which indicates that the Np unit is now located outside CB[8]
and that 53+ has an open or “unlocked” conformation as
schematically shown in Scheme 2. Introduction of O2 into the
solution of 53+ regenerates 43+ andMV2+ as confirmed by UV/
Vis and NMR spectroscopy. Thus, 43+ with a “closed”
conformation is converted into 53+ with an “open” conforma-
tion upon reduction in the presence of MV2+, and the process
can be reversed by oxidation.[11] This system thus behaves as a
molecular loop lock that can be locked and unlocked with a
key and a redox stimulus (Scheme 3): The two species 43+ and
53+ represent the locked and unlocked states, respectively, and
MV2+, which is activated by reduction, plays the role of the
key. It may be regarded as a “safeguarded” lock that requires
not only a key but also an activation process to open.[10, 12,13]

In summary, we have demonstrated the redox-coupled
guest-exchange of CB[8]-stabilized CT complexes which
illustrates unprecendented interconversion, triggered by an

Scheme 2. Formation of the molecular loop lock 43+ (folded “locked”
state) through the formation of an intramolecular CT complex inside
CB[8], and the redox-induced formation of ternary complex 53+ (open
“unlocked” state).

Figure 2. Absorption spectra of 43+ (0.25 mm) before (a and inset)
and after (c) reduction with Na2S2O4 in the presence of MV

2+

(1 equiv) in carbonate buffer (pH 10.0). Optical path=1 mm;
g zero absorption.

Figure 3. 1H NMR spectra obtained after reduction of 43+ with Na2S2O4

in carbonate buffer (pH 10.0) a) in the absence of MV2+, b) in the pres-
ence of MV2+ (0.5 equiv), and c) in the presence of MV2+ (1.0 equiv).
The signals labeled with * correspond to the CB[8] host.
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external stimulus, of hetero- and homo-guest-pair inclusion in
a molecular host. Furthermore, we have synthesized a redox-
driven molecular machine based on this phenomenon that
behaves as a molecular loop lock, which requires both a key
and an activation process to open. Further studies on the
novel molecular machine and its applications are in progress.

Experimental Section
3·3Br : The tribromide salt of N-(3-(naphthalen-2-yloxy)propyl)-N’-
(3-(trimethylamino)propyl-4,4’-bipyridinium) (34+·3Br�) was pre-
pared according to a reported procedure[5c] with a minor modification.
Detailed procedures are described in Supporting Information.

4·3Br : CB[8]·H2SO4·16H2O (20.0 mg, 11.6 mmol) was added to a
solution of 3·3Br (7.0 mg, 9.7 mmol) in D2O (4 mL), and the resulting
mixture was sonicated for 1 min. Undissolved solid was filtered off,
and the filtrate was slowly evaporated under reduced pressure to yield
the title product (18.2 mg, 92%). 1H NMR (500 MHz, D2O, 25 8C,
TMS): d= 8.84 (d, J(H,H)= 6.3 Hz, 1H; Py), 8.79 (d, J(H,H)=
6.6 Hz, 2H; Py), 8.76 (d, J(H,H)= 6.3 Hz, 1H; Py), 6.85–6.78 (m,
2H; Py, Np), 6.74 (d, J(H,H)= 6.5 Hz, 3H; Py, Np), 6.65 (d, J(H,H)=
8.9 Hz, 1H; Np), 6.62 (d, J(H,H)= 4.8 Hz; Np), 6.56 (d, J(H,H)=
8.1 Hz, 1H; Np), 6.51 (d, J(H,H)= 3.4 Hz, 2H; Np), 6.06 (d, J(H,H)=
1.9 Hz, 1H; Np), 5.72 (dd, J(H,H)= 9.2, 15.3 Hz, 16H; CB[8]), 5.47 (s,
16H; CB[8]), 5.08–5.02 (m, 2H; Py-CH2), 4.91–4.88 (m, 2H; Py-CH2),
4.62–4.57 (m, 2H; OCH2), 4.21–4.16 (dd, J(H,H)= 9.2, 15.3 Hz, 16H;
CB[8]), 3.66 (t, J(H,H)= 9.1 Hz, 2H; NCH2), 3.57–3.56 (m, 6H;
NCH2), 2.99–2.66 (m, 4H; CH2), 1.46 ppm (t, J(H,H)= 7.11 Hz, 9H;
CH3); HRMS (ESI-MS): m/z : calcd for C80H90N35O17 [M-3Br]

3+:
604.2418; found: 604.2411.
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Scheme 3. Illustration of the working mode of a molecular loop lock
with a key.
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