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Abstract: The Ireland ester enolate Claisen rearrangement gives rise to Z-trisubstituted 
alkenes via heteroatom mediated substrate pre-organization prior to rearrangement. 

The Claisen rearrangement of ally1 vinyl ethers to give y&unsaturated carbonyl compounds is a widely used 

reaction in organic synthesis. 1 An important modification, the Ireland ester enolate Claisen rearrangement,2 

resulted in improved selectivity and greatly accelerated rates at or below ambient temperature. Numerous reports 

testify to the value of this contribution. * The Claisen rearrangement, either the thermal or Ireland modification, 

normally yields (E)-alkenes. The observed E-selectivity can be rationalized on the basis of reaction via a chair- 

pseudoequatorial pseudoaxial 

like conformation of the cyclic transition state which places the more bulky group at the carbinol carbon in the 

pseudo-equatorial orientation. Most of the previous studies have focused on the relative stereochemistry at the 

a&centers of the resulting y&unsaturated carboxylic acid, and have shown the stereochemistry to be strongly 

dependent on both enolate and alkene geometry. 1-S A new direction for the now classical Ireland ester enolate 

accelerated Claisen rearrangement is a ligand assisted version which yields Z&substituted alkenes as a result of 

heteroatom enforced control during the rearrangement.6s7 

Our approach to alkene selectivity utilizes coordination of an ether oxygen (at the carbinol center) to the 

enolate metal to provide pre-organization of the substrate, via a seven membered chelate, prior to rearrangement 

(eq 1). A very high degree of selectivity has been achieved in reactions of tertiary carbinol esters. The results are 

listed in the Table. Oxygen very effectively acts as a control element placing the ethereal sidechain in the 

pseudoaxial orientation prior to rearrangement. 

Reactions with numerous different metals using oxygen as the control element were investigated, for 

example M = Li, CpZZrCl, ZnBr and TiC13. None of the combinations gave a Z:E ratio greater than 80:20. 

Different solvents, ether, THF, toluene and combinations thereof did not significantly improve the ratio. The 

highest selectivity in the rearrangement ultimately was obtained after ester deprotonation at -10 ‘C using 

BrMgN(Et)z 8 in a 2: 1 mixture of Et,O:THF in the presence of 1 equiv of HMPA and stirring for 15 h at 0 “C. 

Higher temperatures decreased the selectivity as did the use of more HMPA. 
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J....JR --$~R -+,6 6 (1) 

R OR’ 
1,3 R’=Me 
5,7,9 R’=MOM 

. . 

2,4 Z R’=Me 2,4 E R’=Me 
6,8,10 Z R’=MOM 6,8,10 E Fi’=MOM 

TABLE 

M Z:E neld Lactone 

0’ 
(W yield (X) 

1 R=Me MgBr 22:2E 9614 87 - 
1 R-Me TMS 2Zz2E 4654 60 - 
3 R=E1 MgBr 4Z:4E 9317 
3 R=E1 TMS 42:4E 5050 : : 

0’ MOM 5 5 R=Et R=E1 TMS MgBr 6Z:6E 6Z:6E 5050 95:5 85 
80 

- 15 60 

7 R&y-hexyl MgBr 8Z:8E 299:l 81 16 77 
7 R&y-hexyl TMS 8Z:8E 64:36 
9 R=(CH2)2Ph MgBr 10Z:lOE 90:10 z 17 78 

MOM 

9’ ra 0 0 
Et 

11 11 13 
13 R”=H k***=Me 

R”=Me, R’LMe R”=H R”‘=Me R”‘=H W=H 

TMS 

TMS MgBr 

12Z:l2E 60:40 
MgBr 

12Z:l2E 14Z:l4E 36:64 >99:1 

; _ 
14Z:l4E r99:l 

85 l 
63’ 

- - 
18 56’ 

R’” 
R” 

l Reaction carried out at ambient temperature after deprotonation at -10 “C 

The examples in the Table show that both methoxymethyl and methyl ethers direct equally well. Large 

groups at the carbinol center, i.e. R=cy-C$11, provided even more enhanced selectivity. The effectiveness of 

the metal mediated pre-organization is illustrated in the Table by a comparison of the results of rearrangement of 

the bromomagnesium enolate and the corresponding trimethylsilylketene acetal.lO~l* If the carbinol center is 

tertiary, then no steric preference should be observed and a mixture of E and Z isomers would be expected upon 

rearrangement in the absence of ligand direction. In fact, essentially no selectivity was observed upon thermal 

rearrangement of the trimethylsilylketene acetal of esters of tertiary carbinols. Ester 11 rearranged to give only 
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the tetrasubstituted alkene 12Z.l” Rearrangement of ester 13 gave rise to 142 exclusively. We have been 

unsuccessful in our attempts to trap the magnesium enolate as the ketene acetal. Therefore, at this time, we do 

not know if it is the E-enolate which rearranges through a chair-like conformation of the transition state or the Z 

enolate rearranging through a boat-like conformation of the transition state to give the observed result. The 

stereochemistry of 142 was assigned following lH NOE NMR spectroscopic studies on the corresponding 

bromolactones 19 and 20. 

Using the current set of reaction conditions, rearrangement of esters of secondary alcohols gave only 

mixtures of E/Z isomers in low yields and significant amounts of ester cleavage and Claisen condensation 

occurred. Use of sulfur in place of oxygen as the control element resulted in a significant loss of selectivity. ln 

addition, an increase in the chain length between the carbinol center and the coordinating ligand was also 

detrimental to the efficiency and selectivity of the reaction.12 

Hydrolysis of the MOM ether13 was accompanied by concomitant lactone formation (eq 2). This provided 

not only a verification of the alkene geometry, but also a means of purification and separation of the Claisen 

rearrangement product. 
0 

OMOM 
PPTE: 

- 0 MOM 2-butanone 

5 R=Et 6Z R=Et ‘R 
7 R&y-hexyl 

=(CH,),Ph 
82 R&y-hexyl 
IOZ R=(CH,),Ph 

no/o 15 R=Et R 
16 R&y-hexyl 
17 R=(CH,),Ph 

‘Et 
18 

Methods for controlling the stereochemistry of formation of carbon-carbon bonds are of utmost importance 

to synthetic organic chemistry. These results show the dramatic effect that a metal-ligand interaction can have in 

determining the reactive conformation of the transition state for the Claisen rearrangement. This reaction, which 

forms Z trisubstituted alkenes, complements the results obtained from the Se02 catalyzed allylic oxidation14 

which gives rise to the analogous E-allylic alcohol. Further work is in progress and the results will be reported in 

due course. l5 
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