955

Dialkylaminophosphines

R. Bruce King* and Narayan D. Sadanani

Department of Chemistry, University of Georgia, Athens, Georgia 30602, U.S.A.

Reduction of Cx_2NPCI_2 (Cx = cyclohexyl) with LiAlH₄ gives Cx_2NPH_2 as an isolable air-sensitive liquid which can be converted into the relatively stable metal carbonyl complexes $Cx_2NPH_2M(CO)_5$ (M = Cr and W) and

 $Cx_2NPH_2Fe(CO)_4$; the 2,2,6,6-tetramethylpiperidino derivative $CMe_2[CH_2]_3CMe_2NPH_2$ is also isolable and the diisopropylamino derivative Pr_2NPH_2 has been detected in solution by ³¹P n.m.r. spectroscopy.

Recent work from our laboratory¹ has indicated that bis-(dialkylamino)phosphines, $(R_2N)_2PH$, can be isolated if the R_2N groups are sufficiently bulky. For example, the bis(diisopropylamino) derivative, $(Pr^i_2N)_2PH$, is a relatively stable, albeit highly air-sensitive compound which is a useful ligand for transition metal carbonyls.² We have now also found that a similar principle can be used to provide the first isolable dialkylaminophosphines, R_2NPH_2 , containing hydrocarbon R groups. In this case, however, a much larger R_2N group is needed to provide an isolable compound, relative to the $(R_2N)_2PH$ derivatives, since only one R_2N group is available in an R_2NPH_2 derivative for steric shielding of the phosphorus atom. The only R_2NPH_2 derivatives which have been reported previously are the silylamino derivatives $(Me_3Si)_2NPH_2$ ³ and $(Bu^tMe_2Si)_2NPH_2$.⁴

Our most extensive work to date has been with the dicyclohexylamino derivative Cx_2NPH_2 (Cx = cyclohexyl). In a typical preparation equimolar amounts of Cx_2NPCl_2 and

Table 1. Spectroscopic data on the PH₂ groups in dialkylaminophosphines and their metal carbonyl complexes.^a

	N.m.r. data			I.r. data ^c
Compound	$^{1}H \delta(PH_{2})$	$^{31}P \delta(PH_2)^{b}$	¹ J (P–H), Hz	$\nu(PH), cm^{-1}$
Pr ⁱ ₂ NPH ₂		-82.9	196	
CMe ₂ [CH ₂] ₃ CMe ₂ NPH ₂	4.51 ^d	-86.6	202	2280m, 2210w
Cx ₂ NPH ₂	4.75 ^d	-72.3	200	2230sh, 2200m
$Cx_2NPH_2Cr(CO)_5$	6.40°	+6.2	330	2360w, 2250vw
$Cx_2NPH_2W(CO)_5$	5.38 ^d	-47.6	341	2320vw
$Cx_2NPH_2Fe(CO)_4$	6.73°	+14.6	372	2330vw, 2250vw

^a ¹H and ³¹P chemical shifts are reported in p.p.m. *downfield* from internal Me₄Si and external 85% H₃PO₄, respectively. ^b Tetrahydrofuran solution. ^c Hexane solution. ^d C₆D₆ solution. ^e CDCl₃ solution.

LiAlH₄ were mixed in tetrahydrofuran (thf) at -78 °C. The resulting solution was then stirred overnight at room temperature. At this point the ³¹P n.m.r. spectrum indicated complete conversion into Cx₂NPH₂. The product was isolated (after removal of solvent, extraction with dry pentane) in a 65–80% yield as a very air-sensitive colourless liquid, characterized by its i.r. and n.m.r. spectra (Table 1).

Since Cx₂NPH₂ could not be purified by vacuum distillation (which causes decomposition with the liberation of free Cx₂NH), it was characterized by conversion into its metal carbonyl complexes. These are relatively insensitive to air oxidation and are sufficiently thermally stable to be purified by vacuum sublimation. In a typical such experiment a solution of $(thf)W(CO)_5$, prepared by photolysis of 23.4 mmol of $W(CO)_6$ in thf (400 ml), was stirred (2 days) with Cx_2NPH_2 (23.3 mmol). The residue from the reaction (after removal of solvent in vacuo, extraction with hexane) was treated to remove $W(CO)_6$ and a small amount of Cx_2NH and then sublimed at 130 °C/0.005 mm Hg to give a 27% yield of pale yellow Cx₂NPH₂W(CO)₅ (m.p. 117 °C). A similar procedure was used to prepare light yellow Cx₂NPH₂Cr(CO)₅ (m.p. 109-110 °C), but failed to give the corresponding molybdenum derivative. The iron compound, $Cx_2NPH_2Fe(CO)_4$, a brown liquid freezing above -78 °C, was obtained by reaction of Cx_2NPH_2 with $Fe_2(CO)_9$ in thf. The metal carbonyl complexes were characterized by elemental analyses (C, H, N) and infrared spectra in the v(CO) region. similar LiAlH₄ reduction of the 2,2,6,6-Α

tetramethylpiperidino derivative, CMe₂[CH₂]₃CMe₂NPCl₂,

gave the corresponding R_2NPH_2 derivative. Reduction of $Pr_{i_2}NPCl_2$ with LiAlH₄ in thf at -78 °C gave a solution, shown (³¹P n.m.r.) to contain $Pr_{i_2}NPH_2$. However, attempted isolation led to complete decomposition into a brown nonvolatile sparingly soluble solid. Reduction of the 2,6-dimethylpiperidino derivative CHMe[CH₂]₃CHMeNPCl₂ with LiAlH₄ under similar conditions failed to give any evidence (n.m.r.) for the formation of an R_2NPH_2 derivative in solution. These experiments indicate the need for a relatively large R_2N group in order to obtain an isolable R_2NPH_2 derivative. In addition, they indicate that the di-isopropylamino group, which gives an isolable and relatively stable (R_2N)₂PH derivative.¹ is not sufficiently large to give an isolable R_2NPH_2 derivative.

We thank the Air Force Office of Scientific Research for partial support of this work.

Received, 12th April 1984; Com. 531

References

- R. B. King, N. D. Sadanani, and P. M. Sundaram, J. Chem. Soc., Chem. Commun., 1983, 477; Phosphorus Sulfur, 1983, 18, 125; R. B. King and P. M. Sundaram, J. Org. Chem., 1984, 49, 1784.
- 2 R. B. King and W.-K. Fu, J. Organomet. Chem., in the press
- 3 E. Niecke and R. Ruger, Angew. Chem., Int. Ed. Engl., 1982, 21, 62.
- 4 E. Niecke, R. Ruger, M. Lysek, S. Pohl, and W. W. Schoeller, Angew. Chem. Suppl., 1983, 639.