

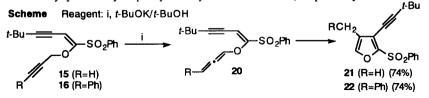
PII: S0040-4039(96)01682-6

REGIO- AND STEREOSELECTIVE VINYLIC SUBSTITUTION REACTIONS OF α-HALOENYNE SULFONES

Mitsuhiro Yoshimatsu* and Junko Hasegawa

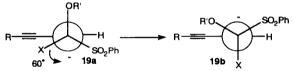
Department of Chemistry, Faculty of Education, Gifu University, Yanagido, Gifu 501-11, Japan

Abstract: The nucleophilic vinylic substitution reaction of (E)- α -haloenyne sulfones 2, 5-8 with sodium alkoxides proceeded regioselectively to give (E)- α -alkoxyenyne sulfones 9-17 in high yields with exclusive retention of their configuration. Copyright © 1996 Elsevier Science Ltd


Recently, we reported the dehydrosulfonylation reaction of 1-phenylsulfonyl-1-buten-3-yne.¹ These conjugate enyne sulfones are a potentially versatile intermediate in synthetic organic chemistry; however, these conjugate enyne sulfones have received little attention so far. There are no reports on the syntheses and reactivities of enyne sulfones except for our previous results¹ and that of Krause.² In order to characterize the enyne sulfones, we attempted the addition reaction of an alkoxide anion to the enyne sulfone. The reaction of 5,5-dimethyl-1-phenylsulfonyl-1-hexen-3-yne (1) with sodium methoxide did not proceed and the enyne sulfone was recovered. We then performed the reaction of α -haloenyne sulfones with a few nucleophiles such as PhSNa, PhSeNa, PhSO₂Na, and RONa. The addition of PhSNa to the α -chloroenyne sulfone 2 occurred at the α -position of the sulfonyl group to give (E)-5,5-dimethyl-1-phenylsulfonyl-1-buten-3-yne (3) in 71% yield; however, the addition reaction of PhSeNa (generated *in situ* from (PhSe)₂ and NaBH₄ in EtOH) to the enyne sulfone 2 occurred at the δ -position of the sulfonyl group to give (4) in quantitative yield. The addition reaction of PhSO₂Na gave a complex mixture. On the other hand, sodium alkoxides regioselectively gave α -alkoxyenyne sulfones as a versatile intermediate.

 α -Haloenyne sulfones are prepared by almost the same procedure as described in our previous report.^{1,3} α -Chloroenyne sulfone 2 reacted with sodium methoxide (2 equiv.) to give α -methoxyenyne sulfone 9 in 72% yield (Table 1, entry 1). The stereochemistry of the product 9 was established by a nuclear Overhauser effect (NOE) enhancement between the olefinic proton and the aromatic *ortho*-protons of the sulfonyl group. The reaction of other α -halo derivatives 5(X=Br), 6(X=I) with sodium methoxide also gave α -methoxyenyne sulfone 9. Next, we examined the addition reaction of various alkoxides to α -chloroenyne sulfones 2, 7, 8. The reactions of *t*-butyl-substituted enyne sulfone 2 with sodium ethoxide, *t*-BuOK, and sodium *i*-propoxide gave α -ethoxy 10 (86%), α -*t*-butoxy 11 (81%), and α -*i*-propoxyenyne sulfone 13 (71%), respectively. Sodium allyloxide and propynyloxide also afforded (*E*)- α -allyloxy 14 and α -propynyloxyenyne sulfones 15 and 16 in high yields. The α -phenoxyenyne sulfone 12 was obtained as an *E*, *Z*-isomeric mixture (*E*:*Z*=16:1) (entry 6). The *n*-butyl-substituted enyne sulfone 7 gave α -methoxyenyne sulfone 17 in 42% yield. The Phsubstituted enyne sulfone 8 gave the adduct 18 in low yield; however, the dehydrosulfonylation reaction of the adduct 18 proceeded smoothly and methyl 4-phenyl-3-butynoate (20%) and (*E*)- and (*Z*)-1-methoxy-4phenylbut-1-en-3-yne (40%) were also obtained.^{1,4} The plausible mechanism for the formation of the products can be explained as follows. Alkoxides attack an α -carbon to the sulfonyl group of the α -haloenyne sulfones and produce $19a.^5$ The high stereoselectivity could be compatible with Rappoport's addition-elimination mechanism.⁶ An alkynyl group of the enyne sulfones enables the perpendicular attack of alkoxy anions to the π orbital, which produces a propargyl anion 19a. The internal 60° rotation of 19a, followed by reductive elimination of halides would give the (E)- α alkoxyenyne sulfone. Negative hyperconjugation between the halides and the carbanionic electron pair 19a accounts for the preference of the 60° rotation over the 120° rotation of 19a.⁶

R ¹ =	 X	> so	₂ Ph	R ² ONa R ¹	B ² O-SO ₂ Ph
Table 1 Reaction of α -Haloenyne Sulfone with Alkoxide					
Entry		Enyne sulfone		Alkoxide	Product (% yield)
		R ¹	х	R ²	
1	2	<i>t-</i> Bu	CI	Me	9 (72)
2	5	t-Bu	Br	Me	9 (71)
3	6	<i>t</i> -Bu	I	Me	9 (68)
4	2	t-Bu	CI	Et	10 (86)
5	2	t-Bu	CI	t-Bu	11 (81)
6	2	t-Bu	CI	Ph	12 (100) ^{*1}
7	2	t-Bu	CI	iPr	13 (71)
8	2	t-Bu	CI	aliyi	14 (66)
9	2	t-Bu	CI	propynyl	15 (97)
10	2	t-Bu	CI	3-phenylpropynyl	16 (85)
11	7	n-Bu	CI	Me	17 (42)
12	8	Ph	CI	Me	18 (11) ^{*2}


*1 E:Z-Isomer ratio was 16:1. *2 Methyl 4-phenyl-3-butynoate (20%) and (E)- and (Z)-1-methoxy-4-phenylbut-1-en-3-yne (40%) were also obtained.

The α -alkoxyenyne sulfones are potential versatile intermediates. We examined the isomerization of the 2propynyl ethers 15 and 16 to the corresponding allenyl derivatives 20 with *t*-BuOK/*t*-BuOH.⁷ The products were found to be 3-ethynyl-4-methyl-2-phenylsulfonylfurans 21 and 22, respectively.

REFERENCES AND NOTES

- 1. Yoshimatsu, M.; Kawahigashi, M.; Shimizu, H.; Kataoka, T. J. Chem. Soc., Chem. Commun., 1995, 583-584. Yoshimatsu, M.; Hayashi, M. Tetrahedron Lett., 1996, 37, 4161-4164.
- 2. Hohmann, M.; Krause, N. Chem. Ber., 1995, 128, 851-860.
- α-Haloenyne sulfones are prepared from the reaction of α-halomethyl phenyl sulfones/LDA and the alkynyl aldehydes followed by elimination using MsCl/Et3N.
- Zweifel, G.; Rajagopalan, S. J. Am. Chem. Soc., 1985, 107, 700-701. Kwon, J. H.; Lee, S. T.; Shim, S. C.; Hoshino, M. J. Org. Chem., 1994, 59, 1108-1114.
- Marshall, D. R.; Stirling, C. J. M. J. Chem. Soc., Perkin II, 1977, 1920-1927. Oftedahl, M. L.; Baker, J. W.; Dietrich, M. W. J. Org. Chem., 1965, 30, 296-298.
- 6. Apeloig, Y.; Rappoport, Z. J. Am. Chem. Soc., 1979, 101, 5095-5098.

7. Yamaguchi, Y.; Tatsuta, N.; Hyakawa, K. Kanematsu, K. J. Chem. Soc., Chem. Commun., 1989, 470-471. Marshall, J. A.; Bartley, G. S. J. Org. Chem., 1994, 59, 7169-7171.

(Received in Japan 8 July 1996; revised 21 August 1996; accepted 26 August 1996)