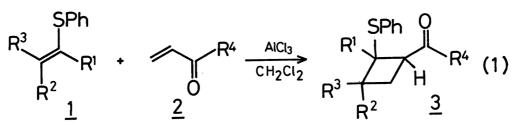
CHEMISTRY LETTERS, pp. 1311-1314, 1986.

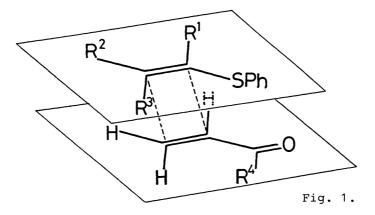

[2+2] Cycloaddition of Alkenyl Sulfide with α , β -Unsaturated Ketone. A Convenient Route to 1-Cyclobutenyl Ketones

Takeshi TAKEDA, * Toshio FUJII, Koichi MORITA, and Tooru FUJIWARA Department of Industrial Chemistry, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184

2-Phenylthiocyclobutyl ketones were produced by the reaction of alkenyl sulfides with α , β -unsaturated ketones in the presence of AlCl₃. The oxidation with MCPBA and the treatment with LDA or KH of the cycloadducts afford the corresponding l-cyclobutenyl ketones in good yields.

Polar [2+2] cycloadditions of olefins activated by electron-withdrawing groups with heteroatom-substituted olefins have been extensively studied as simple methods to construct functionalized four-member rings. However, to our knowledge, no successful polar cycloaddition of α , β -unsaturated ketone was reported.¹⁾

In this communication, we wish to describe a [2+2] cycloaddition of alkenyl sulfides (<u>1</u>) with α , β -unsaturated ketones (<u>2</u>) and the conversion of the cyclo-adducts (<u>3</u>) to 1-cyclobutenyl ketones (<u>5</u>).

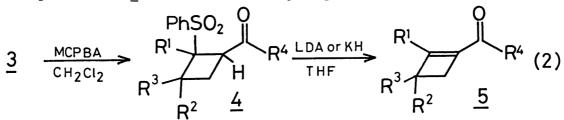


The cycloaddition was carried out in the presence of a catalytic amount of AlCl₃ in CH₂Cl₂ at -78 °C and the results are summarized in Table 1. When monoalkyl substituted vinyl sulfide or (E)-1,2-dialkyl substituted vinyl sulfide²⁾ was employed, the corresponding cyclobutane (<u>3</u>) was obtained in good yield. It was found that TiCl₄ was superior to AlCl₃ as a catalyst in the reaction utilizing 2monoalkyl vinyl sulfide (run 1). However, no cycloadduct (<u>3</u>) was produced and the starting material was recovered in the reaction of (Z)-alkenyl sulfide with methyl vinyl ketone under similar reaction conditions (runs 5 and 7). The stereospecificity of the present reaction suggests that the reaction proceeds by a cisoid approach of the two cycloaddends as depicted in Fig. 1. The alkyl group on β carbon (R³) sterically interferes such an approach of the reactants. As a result, the adducts (<u>3</u>) would be produced stereoselectively. In fact, ¹H NMR signals of methine protons α to carbonyl group of the cyclobutanes (<u>3b</u>, <u>c</u>, <u>d</u>, <u>e</u>, <u>f</u>, <u>g</u>, and <u>h</u>) appear as single triplets (<u>3b</u>; δ = 3.20 (J= 8 Hz), <u>3c</u>; δ = 2.93 (J= 8 Hz), <u>3d</u>; δ = 2.83 (J= 8 Hz), <u>3e</u>; δ = 2.92 (J= 8 Hz), <u>3f</u>; δ = 2.93 (J= 8 Hz), <u>3g</u>; δ = 2.92 (J=

Run	R ¹	R ²	R ³	R ⁴	<u>Time</u> min	Product ⁴⁾ (Yield/%)
1	Н	CH ₃ (CH ₂) ₆	Н	СН3	90	<u>3a</u> (13 (70 ^{b)}))
2	CH ₃ (CH ₂) ₇	Н	Н	CH ₃	25	<u>3b</u> (51 (0 ^{b)}))
3	-(CH ₂) ₄ -		Н	CH3	60	<u>3c</u> (72)
4	CH ₃ (CH ₂) ₇	Ph(CH ₂) ₂	H	CH3	60	<u>3d</u> (78)
5	CH ₃ (CH ₂) ₇	H	Ph(CH ₂) ₂	CH ₃	80	(0)
6	CH ₃ (CH ₂) ₃	CH ₃ (CH ₂) ₂	Н	CH ₃	60	<u>3e</u> (66)
7	CH ₃ (CH ₂) ₃	H	CH3(CH2)2	CH3	60	(0 (82 ^{C)}))
8	CH ₃ (CH ₂) ₇	(CH ₃) ₂ CHCH ₂	Н	CH ₃	90	<u>3f</u> (78)
9	CH ₃ (CH ₂) ₃	CH ₃ (CH ₂) ₂	Н	CH ₃ (CH ₂) ₃	180	<u>3g</u> (71 ^{d)})
10	CH ₃ (CH ₂) ₇	(CH ₃) ₂ CHCH ₂	Н	CH ₃ (CH ₂) ₃	180	<u>3h</u> (71 ^{d)})

Table 1. [2+2] cycloaddition of alkenyl sulfide (<u>1</u>) with α,β -unsaturated ketones (<u>2</u>)^{a)}

- a) All reactions were performed with the same procedure as described in the text, unless otherwise noted.
- b) The yield of the cycloadduct when the reaction was carried out at -30 °C for 30 min in the presence of an equimolar amount of TiCl_4 as a catalyst.
- c) Recovered alkenyl sulfide.
- d) 1.5 equiv. of α , β -unsaturated ketone and 0.3 equiv. of AlCl₃ were used.



8 Hz), <u>3h</u>; δ = 2.90 (J= 8 Hz)).³) This fact suggests that these products are single stereoisomers, although their stereochemistry is not determined.

The typical experimental procedure for the cycloaddition is as follows; to a CH_2Cl_2 (2 ml) suspension of AlCl₃ (46 mg, 0.34 mmol) was added a CH_2Cl_2 (4 ml) solution of (E)-2-methyl-5-(phenylthio)-4-tridecene (<u>1</u>) (521 mg, 1.71 mmol) and

methyl vinyl ketone (144 mg, 2.06 mmol) at -78 °C and the reaction mixture was stirred for 1.5 h. After addition of ether (2 ml) at -78 °C, the reaction was quenched with a saturated NaHCO₃ aqueous solution and the organic material was extracted with CH_2Cl_2 . The extract was dried (Na₂SO₄) and condensed under reduced pressure. The residue was chromatographed on silica gel (AcOEt-hexane) and 1-acetyl-3-isobutyl-2-octyl-2-(phenylthio)cyclobutane (<u>3</u>) (500 mg) was isolated in 78% yield.

Next, the transformation of the adducts to 1-cyclobutenyl ketones was examined. The cycloadducts (3) were oxidized with 2.5 equiv. of MCPBA in CH_2Cl_2 to give the corresponding sulfones (4). Then 4 were treated with LDA or KH in THF and 1-cyclobutenyl ketones (5) were obtained in good yields.

The following experimental procedure is representative; to a CH_2Cl_2 (6.5 ml) solution of MCPBA (564 mg, 3.27 mmol) was added a CH_2Cl_2 (3.9 ml) solution of 1-isobuty1-2-octy1-2-(phenylthio)-3-valerylcyclobutane (<u>3</u>) (545 mg, 1.31 mmol) at 0 °C. After being warmed up to r.t., the reaction mixture was stirred overnight. The reaction was quenched by addition of a 1 M NaOH aqueous solution and the usual work-up and purification by silica gel TLC (AcOEt-hexane) gave the sulfone (<u>4</u>) (545 mg) in 93% yield. A THF (3.6 ml) solution of the sulfone (<u>4</u>) (539 mg, 1.20 mmol) was added to a THF (3.6 ml) suspension of KH (1.44 mmol) at 0 °C and reaction mixture was stirred overnight at r.t. The reaction was quenched with a phosphate buffer solution (pH 7) and the organic material was extracted with ether. The usual

			Oxidation	Elimination		
R ¹	R ² (R ³ = H)	R ⁴	Product ⁴⁾ (Yield/%)	Base(equiv.)	Product ⁴⁾ (Yield/%)	
			(11010/%)		(iieiu/ %/	
н	^{CH} 3 ^{(CH} 2)6	CH ₃	<u>4a</u> (99)	KH (1.0)	<u>5a</u> (81)	
^{CH} 3 ^{(CH} 2)7	Н	CH ₃	<u>4b</u> (86)	LDA (1.2)	<u>5b</u> (86)	
-(CH ₂)	4	CH ₃	<u>4c</u> (93)	LDA (2.5)	<u>5c</u> (49)	
^{CH} 3 ^{(CH} 2)7	$Ph(CH_2)_2$	CH ₃	<u>4d</u> (97)	LDA (1.2)	<u>5d</u> (87)	
CH ₃ (CH ₂) ₇	(CH ₃) ₂ CHCH ₂	сн ₃	<u>4f</u> (85)	LDA (1.2)	<u>5f</u> (74)	
CH ₃ (CH ₂) ₃	CH ₃ (CH ₂) ₂	CH ₃ (CH ₂) ₃	<u>4g</u> (98)	KH (1.2)	<u>5g</u> (66)	
^{CH} 3 ^{(CH} 2)7	(CH ₃) ₂ CHCH ₂	^{CH} 3 ^{(CH} 2)3	<u>4h</u> (93)	KH (1.2)	<u>5h</u> (68)	

Table 2. Synthesis of 1-cyclobutenyl ketones (5)

Chemistry Letters, 1986

work-up and purification by silica gel TLC (AcOEt-hexane) gave 3-isobutyl-2-octyll-valeryl-l-cyclobutene (5) (250 mg, 68%).

In a similar manner, several 1-cyclobutenyl ketones (5) were synthesized as shown in the Table 2.

Concerning the preparation of 1-cyclobutenyl ketones $(\underline{5})$, Snider et al. reported that the $2nCl_2$ catalyzed cycloaddition of olefins with 1-butyn-3-one gave 1-acetyl-1-cyclobutenes.⁵⁾ The yields, however, were low in general owing to the preferential formation of the ene adducts. Although preparation of 1-benzoyl-1-cyclobutene by selenenylation and selenoxide elimination of the corresponding cyclobutyl ketone was also reported,⁶⁾ it is apparent that the method has the inability to synthesize the aliphatic ketones. Therefore, it should be noted that the present reactions constitute the first practical way to prepare 1-cyclobutenyl ketones ($\underline{5}$).

References

- It was reported by Fleming and Karger that only the dihydropyran derivative was produced and the cyclobutane was not obtained by the reaction of methyl vinyl ketone with enamine; I. Fleming and M. H. Karger, J. Chem. Soc., C, <u>1967</u>, 226.
- 2) (E)-1,2-Dialkyl vinyl sulfides can be stereoselectively prepared using 2methoxyalkyl phenyl sulfides by the simple reaction procedure; T. Takeda, H. Furukawa, M. Fujimori, K. Suzuki, and T. Fujiwara, Bull. Chem. Soc. Jpn., <u>57</u>, 1863 (1984).
- 3) The corresponding sulfones (<u>4b</u>, <u>c</u>, <u>d</u>, <u>e</u>, <u>f</u>, <u>g</u>, and <u>h</u>) also showed their ¹H NMR signals of the methine protons at δ = 3.87 (t, J= 9 Hz), 3.46 (t, J= 10 Hz), 3.82 (t, J= 9 Hz), 3.72 (t, J= 9 Hz), 3.75 (t, J= 9 Hz), 3.72 (t, J= 9 Hz), and 3.82 (t, J= 9 Hz), respectively.
- 4) All products were identified by IR and NMR spectra.
- 5) B. B. Snider, L. A. Brown, R. S. Eichen, and T. A. Killnger, Tetrahedron Lett., <u>1977</u>, 2831.
- 6) H. J. Reich, J. M. Renga, and I. L. Reich, J. Am. Chem. Soc., <u>97</u>, 5434 (1975).

(Received May 19, 1986)

1314