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The olefinic bond of c,d-unsaturated aldehydes underwent a net

aziridination through electrophile-induced cyclization and

subsequent rearrangement of the resulting cyclic iminium salts:

this methodology allows the stereospecific introduction of

aziridine moieties into cyclic systems.

Due to the well-known synthetic flexibility of aziridines,1 the

aziridination of olefins 1 towards azaheterocycles 2 is a highly

useful transformation in synthetic organic chemistry (Scheme 1).2

One-step procedures include, among others, the reaction of olefins

with nitrenes,2,3 with N(,N)-(di)halogenated amines,4 with palla-

dium complexes and bromine,5 with [N-(4-toluenesulfonyl)imino]-

phenyliodinane6 and related species.7 The formation of aziridines

from olefins and nitrenes, the latter generally synthesized from

azides, by a-elimination reactions and by oxidation of primary

amines, is well studied.2a,8 When azides serve as precursors,

the alternative of 1,3-dipolar cycloaddition must be envisaged. The

aziridination works well for certain aminonitrenes, in which the

amino group apparently stabilizes the singlet state, but the nature

of the amino substituent is crucial.2a Additionally, such N-amino

aziridines have most often an undesirable substituent which is

difficult to remove or replace by more general substituents.2a,8 An

alternative method for the synthesis of aziridines from olefins

consists of the regio- and stereospecific reaction with halo azides or

iodo isocyanate, the resulting b-halo azides9 and b-iodo isocya-

nates10 being ring closed subsequently.

In the present report, a new and efficient method is disclosed for

the intramolecular aziridination of olefins by transfer of alkyl-

amine moieties (N–R) from a remote position in the molecule (see

compound 3) to the alkene, the net result being the conversion of

an unactivated carbon–carbon double bond into an aziridine 2

(Scheme 1). This approach offers a suitable alternative for the

aziridination of olefins by means of copper-catalyzed reactions of

intermediate oxaziridines.11

N-(2,2-Dimethyl-4-penten-1-ylidene)amines 5, prepared from

2,2-dimethyl-4-pentenal 412 upon treatment with 1 equiv. of a

primary amine in dichloromethane in the presence of MgSO4,

react very smoothly with bromine in dichloromethane at 0 uC for

10 min to afford cyclic iminium salts 6 in essentially quantitative

yields (Scheme 2).13 The functionalized 1-pyrrolinium salts 6 are

easily converted into aziridines 8 by a two-step process, involving

(i) hydrolysis of the iminium function with aqueous hydrogen

chloride in a two-phase system with dichloromethane as a co-

solvent, and (ii) ring closure of the resulting intermediate

b-bromoammonium salts 7 with potassium carbonate in dichloro-

methane (Scheme 2).14 The functionalized aziridines 8 were

isolated, after distillation, in 53–89% overall yields from the

starting a-allylisobutyraldimines 5 (Scheme 2, Route 1). This

initially followed route could be improved considerably by

treatment of the iminium salts 6 with aqueous sodium hydroxide,

directly affording the rearranged end-products 8 in 89–93% yield

(Scheme 2, Route 2).

The net result of this rearrangement constitutes a transfer of an

alkylamino group to the olefinic double bond with concomitant

generation of an aldehyde functionality. Because of the fact that

enimine 5 is easily accessible from 2,2-dimethyl-4-pentenal 4 by a

simple imination procedure in nearly quantitative yields, the net

transformation of pentenal 4 to aziridines 8 comprises an

aziridination of the olefinic double bond by primary amines under

mild conditions, ie via electrophile-induced cyclization of enimines

5 and subsequent hydrolysis and ring closure.
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This intramolecular aziridination was extended to other imines

such as a-allylcyclohexanecarbaldimine 9, isobutyraldimines 11

and 13, and a-(2-cyclohexen-1-yl)isobutyraldimine 15, which were,

after electrophile-induced cyclization with bromine and hydrolytic

alkylamino transfer, converted into aziridines 10, 12, 14 and 16

(Scheme 3). Due to the nature of the cyclization process, the

conversion of 15 into 7-azabicyclo[4.1.0]heptane derivative 1615

occurs stereospecifically with the aziridino moiety positioned cis

with respect to the alkyl substituent.

In order to underline the synthetic potential of this stereospecific

construction of aziridines via an intramolecular rearrangement

process, 1-methyl-2-cyclohexenecarbaldehyde 17 was converted to

b,c-unsaturated imine 18 upon treatment with 1 equiv. of t-BuNH2

in dichloromethane in the presence of MgSO4. The latter imine

underwent smooth electrophile-induced cyclization with bromine

to afford the bicyclic iminium salt 19 in quantitative yield

(Scheme 4). Alkaline hydrolysis of this iminium salt 19 with

aqueous sodium hydroxide at room temperature produced the

rearranged 7-aza-7-t-butyl-2-methylbicyclo[4.1.0]heptane-2-carbal-

dehyde 20 in 86% yield (Scheme 4). Again, the conversion of 17

into 20 consists of a net aziridination process in which the aziridine

moiety is stereospecifically positioned cis with respect to the

carbaldehyde group. This stereospecific aziridination is a useful

synthetic procedure for the functionalization of cycloalkenes due

to the chemical behaviour of (non-activated) aziridines in ring

opening reactions.16

In conclusion, a novel aziridination of olefins via electrophile-

induced cyclization of unsaturated imines towards cyclic iminium

salts and subsequent hydrolytic rearrangement has been presented.

By means of this methodology, a stereospecific introduction of

aziridine moieties in cyclic systems can be accomplished in an

efficient and straightforward manner.
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