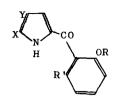
NEWER SYNTHESES OF THE PYOLUTEORIN ANTIBIOTICS

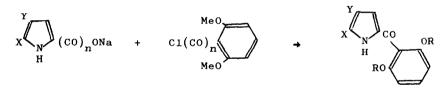
G. R. Birchall, C. G. Hughes and A. H. Rees

Department of Chemistry, Trent University, Peterborough, Ontario, Canada

(Received in USA 21 October 1970; received in UK for publication 2 November 1970)


Three syntheses of the antibiotic pyoluteorin I, have recently been reported^{1,2,3}. To these we now add the novel route via the first reported Friedel Crafts reaction on 2,3-dichloropyrrole (obtained by decarboxylation of 2,3-dichloropyrrole carboxylic acids). Using 2,6-dimethoxybenzoyl chloride and Lewis acids such as stannic chloride, we obtained dimethyl pyoluteorin. Demethylation¹ then gave I in better than 50% yield. This method was also used to synthesize the active monodeoxypyoluteorin[†] II¹ via its ether.

The above synthesis of substituted 2-benzoylpyrroles is general. For example, pyrrole and anisoyl chloride gave III. Halogenation of III followed by demethylation¹ afforded II in good yield. The bromine IV and iodine analogues V were likewise made. Nitration similarly gave the nitro analogue VI $(J_{3,\mu} = 4 \text{ Hz})^4$.


Controlled chlorination of III took place at position 4 and led to VII $(J_{3,5} = 1.6 \text{ Hz})$ via its ether. Similarly, chlorination of VIII (made from pyrrole and dimethoxybenzoyl chloride) gave the 4-monochloro derivative which then chlorinated in position 5 (giving dimethylpyolut-eorin) or in position 3'. Further chlorination of these compounds then led to 3'-chloropyoluteorin via its dimethyl ether.

In a variation of our original synthesis¹ via the reaction of sodium

4879

I, X = Y = C1, R = H, R' = OH II: X = Y = C1, R = R' = H III: X = Y = C1, R = R' = H III: X = Y = R' = H, R = Me IV, X = Y = Br, R = R' = H V, X = Y = I, R = R' = H VI, X = NO₂, Y = R = R' = H VII, X = R = R' = H, Y = C1 VIII, X = Y = H, R = Me, R' = MeO IX, X = Y = 3' = C1, R = H, R' = MeO m.p. 200-205°

Χ.

XI

pyrrole-2-carboxylates X (n = 1) with 2,6-dimethoxybenzoyl chloride XI (n = 1), we have used sodium pyrrole-2-glyoxylates X (n = 2) and obtained pyoluteorins XII.

We have also shown that 2,6-dimethoxyphenylglyoxylyl chloride XI (n = 2) can replace XI (n = 1). We have thus synthesized dimethyl pyoluteorin and 5-dechloro-0,0'-dimethylpyoluteorin XII (Y = Cl, X = H, R = Me) which underwent stepwise demethylation to 5-dechloropyoluteorin via its monomethyl ether.

We believe our dechloropyoluteorin m.p. 197° to be identical with the one m.p. $196-197^{\circ}$ made by Takeda⁵ by partial hydrogenation of pyoluteorin as hydrogenation of our dimethylpyoluteorin XII (X = Y = C1, R = Me), obtained from X (X = Y = C1, n = 2) yielded the same monodechloropyo-luteorin as we synthesized from X (X = H, Y = C1, n = 2) above.

All new compounds whose melting points are quoted above gave satisfactory elemental analyses, n.m.r., mass and other spectra.

We continue to prepare novel compounds for investigation of their structure/activity relationship. Details of this work will be published elsewhere.

Acknowledgements

This work was supported by the National Research Council of Canada and this University, both of which we thank.

REFERENCES

- ¹ K. Bailey and A. H. Rees, <u>J</u>. <u>Chem</u>. <u>Soc</u>., (D), 1284 (1969).
- <u>Idem, Can. J. Chem., 48</u>, 2257 (1970).
- ² D. G. Davies and P. Hodge, <u>Tetrahedron lett.</u>, <u>19</u>, 1673 (1970).
- ³ D. M. Bailey and R. E. Johnson, <u>ibid.</u>, <u>19</u>, 3555 (1970).
- ⁴ A. J. Birch, P. Hodge, R. W. Rickards, R. Takeda and T. R. Watson, <u>J</u>. Chem. Soc., 2641 (1964).
- ⁵ R. Takeda, <u>Bull</u>. <u>Agric</u>. <u>Chem</u>. <u>Soc</u>. <u>Japan</u>, <u>23</u>, 126 (1959).