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The absorbance (A), absorbance di†erence (AD) and absorbance di†erence quotient (ADQ) diagrams are called
Mauser diagrams. Typically, these diagrams represent two-dimensional plots. The so-called Mauser space is
multidimensional (n P 2). The axes of this space are established by the absorbances or absorbance di†erences
of n wavelengths. A reaction system that consists only of one linearly independent reaction step (s \ 1) leads to
a straight line in Mauser space. This line is obtained independent of the reaction order of the system. A
one-dimensional coordinate axis can be established which is orientated in the direction of the straight line
lying in the Mauser space (n [ s). The distances of the individual measured points with regard to the origin of
the (one-dimensional) coordinate system can be evaluated kinetically. The procedure is demonstrated using
reactions of Ðrst and second order (s \ 1 ; n \ 4 and 6). A reaction system described by two linearly
independent steps (s \ 2) leads to a curve in the Mauser space which lies on a plane. A two-dimensional
coordinate system can be introduced which lies in this plane. The coordinates of the Mauser curve with regard
to the established (two-dimensional) coordinate system can be evaluated kinetically. The procedure is shown
by evaluating reactions of Ðrst and second order (s \ 2 ; n \ 3 and 4). The advantages of geometric analysis of
Mauser space are discussed.

1 Introduction
Mauser diagrams are a powerful tool for the spectroscopicÈ
kinetic analysis of reaction systems.1h5 The number (s) of lin-
early independent reaction steps can be determined by means
of these diagrams as shown in many examples.1,2 In addition
to this information being important for each reaction system
investigated spectroscopically, the (di†erential) geometric
analysis of the absorbance space (the so-called “Mauser
space Ï) opens up new perspectives for kinetic evaluation.3h5
Until now only two and three-dimensional Mauser spaces
were analyzed geometrically in kinetics. The Ðrst results of
evaluating multidimensional Mauser spaces are reported here.

2 The problem
The mechanism

A ÈÈÈ Õk1
products (1)

represents the simplest reaction of Ðrst order (s \ 1). The
following di†erential absorbance equation is true here1,2

dAj \ zj0 dt ] zj1Aj dt (2a)

with

zj0\ k1Aj= and zj1\ [k1 (2b)

is the absorbance at time t and at wavelength j. The termAj is the absorbance for t ] O. The coefficients andAj= zj0 zj1are constants that relate to the rate constant and ask1 Aj=shown.
The mechanism

A] B ÈÈÈ Õk1
products (3)

represents a simple reaction of second order (s \ 1). In
analogy to eqn. (2)1,2

dAj\ zj0 dt ] zj1(Aj [ Aj0) dt

] zj2(Aj [ Aj0)2 dt (4a)

with

zj0 \ k1a0 b0Qj , zj1 \ [k1(a0] b0)
and

zj2 \ k1/Qj (4b)

where is the absorbance at t ] 0 (t ] 0)) ;Aj0 (Aj0\ Aj a0and are the initial concentrations of A and B. is a con-b0 Qjstant that is a function of the absorbance coefficients ofejicomponents and the pathlength of the cuvette.1,2
A linear reaction system consisting of two linearly indepen-

dent steps (s \ 2) is represented by the following parallel reac-
tions

A ÈÈÈ Õk1
products (5a)

B ÈÈÈÕk2
products (5b)

It is true here that1,2
dA \ z

0
dt ] Z A dt (6a)

with

dA \
AdA1
dA2

B
, z

0
\
Az10
z20

B
, Z \

Az11 z12
z21 z22

B

and

A \
AA1
A2

B
(6b)
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The determinant D and trace S of Z leads to according tok1,2
D\ z11z22[ z12 z21\ k1k2 , (6c)

S \ z11 ] z22\ [(k1 ] k2) (6d)

and

k1,2 \
S ^ (S2[ 4D)1@2

2
. (6e)

and are the absorbances at wavelength andA1 A2 j1 j2(A1\ Aj1, A2 \ Aj2).Finally, the two reactions (s \ 2) of second order :

A] B ÈÈÈ Õ
k1

C] D (7a)

A] E ÈÈÈ Õ
k2

F] G (7b)

obey the equations1,6

dA \ z0 dt ] Z *A dt ] Y *A2 dt (8a)

with

dA \
AdA1
dA2

B
, z0 \

Az10
z20

B
, Z \

Az11 z12
z21 z22

B
,

*A \
A*A1
*A2

B
, Y \

Ay11 y12 y13
y21 y22 y23

B
,

*A2 \

1 *A12
*A22

*A1*A2

2
(8b)

where

*Aj \ Aj[ Aj0 (8c)

The rate constants and for (7a) and (7b) can be calcu-k1 k2lated by means of the determinant D and trace S of Z as
follows

D\ z11z22[ z12 z21\ k1k2 a0(a0] b0 ] e0) (8d)

S \ z11 ] z22 \ [k1(a0 ] b0)[ k2(a0 ] e0) (8e)

and

k1,2 \
[p1S ^ [(p1S)2[ 4p1p2p3D]1@2

2p1p2
. (8f )

where

p1 \ a0 (a0] b0 ] e0) (8g)

p2 \ a0] b0 (8h)

p3 \ a0] e0 . (8i)

is again the absorbance at t ] 0 (t ] 0)).Aj0 (Aj0\ AjThe coefficients of eqns. (2a) and (4a) can be determinedz
ijby formal integration.1h6 This is also true for and ofz

ij
y
ij

z0 ,
Z and Y (see eqn. (8a)). The constants lead to the rate con-z

ijstants for the di†erent reaction mechanisms shown by eqns.k
i(2b), (4b), (6e) and (8f ).

The accuracy of the kinetic evaluation depends on how
spectroscopically perceptibly signiÐcant the individual reac-
tions are. When reactions exist which show poorly spectro-
scopic properties the kinetic evaluation may falter or even fail.
This situation may be overcome when several wavelengths (n)
that are distributed in the spectra registered are included
simultanously in the evaluation procedure (with n [ s).
However, the di†erential absorbance equations presented
(compare eqns. (2a), (4a), (6a), (8a)) are only true for
absorbance values at s wavelengths. The modiÐcation of the

presented di†erential absorbance equations that is true for n
wavelengths is shown subsequently. A practical example is
given for each reaction mechanism discussed above.

3 Reactions of Ðrst and second order consisting of
one independent step (s = 1)

3.1 Theory

The Mauser space is generated by the absorbance axes of (n)
di†erent wavelengths. The absorbances change in dependence
on time, leading to a characteristic curve in Mauser space.
The absorbances are now represented by a vector A with the
coordinates (n [ s)

A \

1Aj1
Aj2
<

Ajn

2
\

1A1
A2
<

A
n

2
(9)

The vector A is time dependent. Selecting the vector A for
t ] 0, the di†erence vector *A can be established according to

*A \ A [ A0 \

1A1[ A1(t ] 0)

A2[ A2(t ] 0)

<
A

n
[ A

n
(t ] 0)

2

\

1A1[ A10
A2[ A20

<
A

n
[ A

n0

2
\

1*A1
*A2

<
*A

n

2
(10)

Each reaction system consisting of one linearly independent
reaction (being of Ðrst or second order) leads to straight lines
in the absorbance (A) and absorbance di†erence (AD) dia-
grams as shown in refs. 1 and 2. Thus, the ratio of any two
AD values in eqn. (10) is a constant(*A

i
/*A

j
)

*A
i

*A
j

\ a
ij

(11)

It follows from this fact that a straight line is also obtained in
the n-dimensional AD or A diagram (n [ s). The basic law
according to LambertÈBeerÈBouguer can be developed for the
dependence on concentrations or degrees of advancements

In the case of s \ 1, the general equation (12) is true(X
i
).1,2,5,6

for reactions of Ðrst and second order1,2

*Aj \ QjX1 (12)

where is a constant for each wavelength (compare eqn.Qj(4b)). The introduction of eqn. (12) into eqn. (10) leads to

*A \

1*A1
*A2

<
*A

n

2
\

1Q1
Q2
<

Q
n

2
X1 (13)

It follows from this equation that

*A12
*A22

<
*A

n
2

\
\

\

Q12
Q22

Q
n
2

É
É
<
É

X12
X12

X12

(14)

Each value of is dependent on time and so produces aX1point in the n-dimensional AD diagram. The distances v
between the origin and these points which lie on a straight
line passing through the origin can be computed according to

v\ [(*A1)2] (*A2)2] É É É (*A
n
)2]1@2 (15)
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Scheme 1

One obtains from eqns. (14) and (15)

v\ X1[Q12] Q22] É É É Q
n
2]1@2 (16)

Comparison of eqns. (12) and (16) shows that both and v*Ajare proportional to However, the factor of proportionalityX1.of eqn. (16) is much larger than that of eqn. (12). Thus, an
improvement in spectroscopic evaluation should be achieved
when the Mauser space is applied.

Instead of eqns. (2a), (2b), (4a) and (4b) it is true here that

dv\ pj0 dt ] pj1v dt (17a)

with

pj0\ k1v= and pj1\ [k1 (17b)

and

dv\ pj0 dt ] pj1v dt ] pj2 v2 dt (18a)

with

pj0\ k1a0 b0Q
v
, pj1\ [k1(a0 ] b0), pj2\ k1/Qv

(18b)

where is the value of v for t ] O and is a constantv= Q
v(which is not identical with Eqns. (17a) and (17b) can beQj).applied to evaluate linear reactions of rank one (s \ 1)

whereas eqns. (18a) and (18b) are true for second order reac-
tions (s \ 1).

3.2 Practical examples (s = 1)

3.2.1 First order reaction. The spontaneous hydrolysis of
Boc-gly-ONP (N-tert-butoxycarbonylglycine p-nitrophenyl

Table 1 SpectroscopicÈkinetic analysis of hydrolysis reaction of Boc-
gly-ONP (7] 10~5 M); reaction conditions : 0.1 M borax bu†er ;
pH \ 8.7 ; temperature 25 ¡C (see ref. 1) ; evaluation according to eqns.
(2a) and (2b). Mean value of k : 2.31] 10~3 s~1. Evaluation accord-
ing to eqns. (17a) and (17b) using the four-dimensional Mauser space

vs. vs. vs. s~1(A420 A400 A380 A290), k1\ 2.31] 10~3

j/nm 420 400 380 290

k1] 103/s~1 2.2(9) 2.3(3) 2.3(5) 2.2(6)

ester) has already been studied thoroughly in 0.1 M borax
bu†er (pH\ 8.7, temperature T \ 25.0 ¡C).1h5 The same reac-
tion (Scheme 1) was used here to test the method presented.

The reaction was spectroscopicÈkinetically evaluated at the
wavelengths 420, 400, 380 and 290 nm according to routine
procedures and according to the new method. The results of
evaluation using eqns. (2a) and (2b) are shown in Table 1. As
well, the result obtained by eqns. (17a) and (17b) is presented
in Table 1. Obviously, nearly an optimal result was achieved
here using the four-dimensional Mauser space which contains
no time axis. The error in the coefficients could be determined
from eqn. (17a) by simulating the curve.1,2 This error lay
between 0.2 and 1.5% for Scheme 1.

Geometric analysis of the Mauser space is of particular
interest in the case of s [ 1. The geometric properties for the
case s \ 2 discussed subsequently can be understood better
when the position of the curve lying in the three-dimensional
Mauser space is considered systematically, starting with the
case s \ 1. The absorbances of Scheme 1 lie on a straight line
in Fig. 1(a). When the coordinate system is rotated a position
can be found where the straight line is regarded as a single
point. The “size Ï of this point gives information about how
strongly the points measured are scattered around the straight
line observed. According to Fig. 1(b), scattering is weakly pro-
nounced for the reaction shown in Scheme 1. In the case of
linear reactions (s \ 1) the distance v can be related to any
point measured (1st, 2nd, . . . nth point), meaning that canA0be replaced by in eqn. (10) leading to a changed value *AA

nand, thus, to an altered value v, (see eqn. (15)).

3.2.2 Second order reaction. The aminolysis of Boc-gly-
ONP with n-butylamine using the solvent acetonitrile can be
described by the second order reaction shown in Scheme 2.
The reaction has already been studied in detail and the rate
constants were determined using the absorbances at six wave-
lengths (see Table 2).1 The kinetic evaluation of the six-
dimensional Mauser space leads to a rate constant which lies
close to the mean value of the six rate constants obtained at
the individual wavelengths (see Table 2). The coefficients of
eqn. (18a) showed an error of about 0.4%.

Fig. 1 Three-dimensional A diagrams for Scheme 1 vs. vs. The absorbances measured lie on a straight line as shown by part(A400 A420 A380).(a). (b) The situation when (a) is rotated until the viewer sees the line as a point. The signiÐcance of distance v is shown in part (a).

Phys. Chem. Chem. Phys., 2001, 3, 993È999 995
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Scheme 2

4 Reactions of Ðrst or second order consisting of
two independent steps (s = 2)

4.1 Theory

Spectroscopically investigated reactions with two independent
steps (s \ 2) of Ðrst and/or second order are generally
described by means of two degrees of advancement (X1, X2)according to1,2,5,6

*Aj \ Aj [ Aj0\ Qj1X1 ] Qj2X2 (19)

where (t ] 0) ; and are constants beingAj0\ Aj Qj1 Qj2dependent on j.1,2
A typical curve for vs. is shown in Fig. 2(a). TheX1 X2curve is starting from the origin (t ] 0) and is ending atP0point (t ] O). A straight line can be constructed whichP=passes through and P@. P@ is a point which can be identicalP0with or which lies near on the curve with points PP= P=(P@\ P). The line generates a new axis which is denotedP0P@

v@. A second axis, w@, can be introduced which runs perpen-
dicularly to v@ and which passes through (see Fig. 2(a)).P0Thus, the new coordinate system with axes v@ and w@ is the
result of rotation of the old system with axes and ThisX1 X2 .
rotation represents an affine transformation. For example, the
eigenvalues and that characterize the curve are pre-(r1 r2)served during this transformation.

The transduction of Fig. 2(a) into the corresponding two-
dimensional absorbance diagram vs. again represents(Aj1 Aj2)an affine transformation.1h5 Thus, the absorbance curve (Aj1vs. has the same characteristic properties (e.g. the sameAj2)eigenvalues of Z in eqn. (6a) or eqn. (8a)) as the corresponding
curve of vs. This property of preservation is notX1 X2 .1h6
changed when n-dimensional Mauser diagrams vs. vs.(Aj1 Aj2É É É are introduced.Ajn)A plot of vs. vs. (shortened to vs. vs. isAj1 Aj2 Aj3 A1 A2 A3)shown in Fig. 2(b) for s \ 2. Since, according to eqn. (19), each
value depends on only two variables a curve isAj (X1, X2)

Table 2 Aminolysis of Boc-gly-ONP (9 ] 10~5 M) and n-
butylamine (9] 10~5 M) in acetonitrile (temperature 25.0 ¡C; see ref.
1) ; evaluation according to eqns. (4a) and (4b). Mean value of k : 2.83
M~1 s~1. Evaluation according to eqns. (18a) and (18b) using the
six-dimensional Mauser space vs. vs. vs. vs.(A320 A310 A270 A265vs. M~1 s~1A260 A230), k1\ 2.82

j/nm 320 310 270 265 260 230

k1/M~1 s~1 2.8(0) 2.7(8) 2.8(7) 2.8(5) 2.8(3) 2.8(6)

Fig. 2 (a) vs. for reactions of two independent steps (s \ 2).X1 X2The coordinate system with axes v@ and w@ is obtained by rotation of
the system vs. around the origin. and are the initial andX1 X2 P0 P=end points of reactions. P (as well P@) are points of the reaction
system. P@ may be or may lie near to (P@\ P). (b) vs. vs.P= P= A1 A2The points of a reaction system consisting of two linearly inde-A3 .
pendent reactions lie, generally, on a plane. and are the initialP0 P=and end points of reactions. Values of P are the time dependent points
(as well P@). P@ may be or may lie near to The lineP= P= . P0P@
generates the axis v. The axis w is perpendicular to v and lies in the
plane of the curve (P).

obtained in the three-dimensional absorbance space which lies
in a plane. The “original Ï two-dimensional curve of diagram

vs. (see Fig. 2(b)) can be directly constructed from theA2 A3three-dimensional curve by parallel projection when the pro-
jection rays have the same direction of axis (orA1 [A1).Thus, both curves of vs. and vs. vs. can beA2 A3 A1 A2 A3transduced into each other by an affine transformation. The
characteristic properties remain conserved, again. In analogy,
a curve on a plane in four-dimensional space vs. vs.(A1 A2 A3vs. can be transduced by parallel projection into the three-A4)dimensional space vs. vs. The characteristic quan-(A1 A2 A3).tities of both curves are again identical. To summarize this
reÑection, the characteristics of the curve are preserved when
the two- or n-dimensional absorbance space is evaluated (in
the case of s \ 2).

By analogy to Fig. 2(a), a coordinate system with axes v and
w can be constructed which lies in the plane of the absorbance
curve (see Fig. 2(b)). The axis v passes through points andP0P@. The axis w is orientated perpendicularly to v and runs
through (in principal, an orthogonal coordinate system isP0not necessary here). The coordinates of P can be characterized
by means of axes v and w. To establish the corresponding
equations for P the following vectors are introduced :

*A \ a \ P
0

P \
1a1

<
a
n

2
\
1A1P[ A10

<
A

nP
[ A

n0

2
, (20a)

b \ P0P@\
1b1

<
b
n

2
\
1A1P{ [ A10

<
A

nP{[ A
n0

2
, (20b)
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¿\ P0 P
v
\
1v1

<
v
n

2
(20c)

and

w \ P
v
P \
1w1

<
w

n

2
(20d)

The orthogonal projection of a onto the axis leads to the¿
vector and its endpoint see Fig. 2(b)) ; w is the¿ P

v
(¿\ P0 P

v
,

direction vector The lengths of and w are the requiredP
v

P. ¿
quantities which can be obtained by basic vector algebra7,8

o ¿ o\ v\ a (b12 ] É É É b
n
2)1@2

with

a \
a1b1 ] É É É a

n
b
n

b12 ] É É É b
n
2

(21a)

and

o w o\ w\ [(a1 [ v1)2 ] É É É (a
n
[ v

n
)2]1@2

with

v1\ ab1, . . . , v
n
\ ab

n
(21b)

The quantities v and w can replace the role of and inA1 A2eqns. (6a) and (6b) and of and in eqns. (8a) and (8b).*A1 *A2When the same symbols are used for the coefficients as in(z
ij
)

eqns. (6a) and (6b), it is true for the system (5a) and (5b) that

d¿\ z
0

dt ] Z ¿ dt (22a)

with

d¿\
Adv
dw
B
, z

0
\
Az10
z20

B
, Z \

Az11 z12
z21 z22

B
, ¿\

A v
w
B

(22b)

The coefficients of Z generate a determinant (D) and tracez
ij(S) in analogy to eqns. (6c) and (6d) from which and cank1 k2be computed for system (5a) and (5b) according to eqn. (6e)

(even if the functional expressions of in eqns. (22a) andz
ij(22b) are not identical with those in eqns. (6a) and (6b)). The

eigenvalues of Z for system (5a) and (5b) are andr1 \ [k1r2 \ [k2 .
Instead of eqns. (8a) and (8b) it holds that (using the same

symbols and for the coefficients)z
ij

y
ij

d¿\ z0 dt ] Z ¿ dt ] Y ¿2 dt (23a)

with

d¿\
Adv
dw
B
, z0 \

Az10
z20

B
, Z \

Az11 z12
z21 z22

B
,

¿\
A v
w
B
, Y \

Ay11 y12 y13
y21 y22 y23

B

and

¿2 \
1v2
w2
vw

2
(23b)

By means of from Z the quantities D and S can be estab-z
ijlished, in analogy to eqns. (8d) and (8e) for system (7a) and

(7b), leading to and with the help of eqn. (8f ) (even if thek1 k2coefficients and in eqns. (23a) and (23b) are not identicalz
ij

y
ijwith those of eqns. (8a) and (8b)).

4.2 Practical examples (s = 2)

4.2.1 First order reactions. The simultaneous hydrolyses of
Boc-gly-ONP and oNPA (o-nitrophenyl acetate) have been
studied in detail in refs. 1, 3 and 5 using a 0.1 M borax bu†er
(pH \ 8.7 ; temperature 25.0 ¡C) (Scheme 3). ADQ diagrams
can be plotted to determine the number (s) of linearly indepen-
dent reactions.1,2 When straight lines are obtained for di†er-
ent wavelength combinations the case s \ 2 is realized
obeying, generally, the following functional relationship
(j \ 1,2,3)1,2

*A1
*A2

\ a1 ] a2
*A3
*A2

(24a)

with

*Aj \ Aj[ Aj0 (24b)

Rearrangement of this equation leads to

A1 \ a1A2] a2 A3 [ a1A20[ a2 A30] A10 (25)

The last equation represents a plane on which the three-
dimensional curve lies in a diagram of vs. vs. TheA1 A2 A3 .
corresponding plot for Scheme 3 is shown in Fig. 3(a). Obvi-
ously, the curve lies on a plane. To conÐrm this assumption,
the coordinate system is rotated until the edge of the plane is
seen. From this viewpoint, the curve represents a straight line
(Fig. 3(b)). This procedure demonstrates that 3D plots can be
also used directly instead of two-dimensional ADQ diagrams.
The advantage of such 3D plots is that problems are avoided
here which can appear in ADQ diagrams (strongly scattering
points and artefacts, see for example, refs. 1 and 2).

The reaction system of Scheme 3 can be described by eqns.
(5a) and (5b). The results of evaluation according to eqns.
(6a)È(6e) are given in Table 3.

The quantities v and w were determined in the diagram
vs. vs. vs. as demonstrated in Fig. 2(b).A420 A380 A290 A260The plot v vs. w obtained is shown in Fig. 4. Evaluation of the

time dependence data of v and w according to eqns. (22a),
(22b), (6c)È(6e) leads to nearly “ ideal Ï mean values of andk1 k2which can be computed from all possible two-wavelengths
combinations as shown in Table 3. The coefficients of eqn.
(22a) showed an error which was less than 0.5%.

Scheme 3

Phys. Chem. Chem. Phys., 2001, 3, 993È999 997
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Fig. 3 (a) vs. vs. for Scheme 3 (the indices indicate the wavelengths used). (b) Rotation of part (a). The curve lies on a plane and isA420 A380 A290viewed along the edge of this plane. The result is a straight line indicating the case s \ 2.

Table 3 Spontaneous hydrolysis of Boc-gly-ONP and oNPA in 0.1 M borax bu†er (pH 8.7 ; temperature 25.0 ¡C; see refs. 1, 3 and 5) ; evaluation
according to eqns. (6a)È(6e). Mean value of s~1. Mean value of s~1. Evaluation of diagram vs. vs.k1\ 1.73 ] 10~4 k2\ 2.07] 10~3 A420 A380vs. according to eqns. (22a), (22b) and (6c)È(6e), s~1 and s~1 1A290 A260 k1\ 1.7(3)] 10~4 k2\ 2.0(7) ] 10~3

j1/j2 420/380 420/290 420/260 380/290 380/260 290/260

k1] 104/s~1 1.6(7) 1.7(3) 1.7(4) 1.7(5) 1.7(2) 1.7(4)
k2] 103/s~1 2.0(0) 2.0(9) 2.1(2) 2.0(7) 2.0(5) 2.0(8)

Fig. 4 Plot v vs. w for Scheme 3. The coordinates v and w have been
obtained from a plot of vs. vs. vs. (as explainedA420 A380 A290 A260in Fig. 2(b)).

4.2.2 Second order reactions. Boc-gly-ONP and oNPA
react with n-butylamine in acetonitrile as solvent according to
the mechanism1,9

A] B ÈÈÈ Õk1
C] D (7a)

A] E ÈÈÈ Õk2
F] G (7b)

The components are : A \ n-butylamine ; B \ Boc-gly-ONP;
C\ t-Boc-glycine-n-butylamide ; D \ p-nitrophenol ; E \
oNPA; F\ N-acetyl-n-butylamide ; G \ o-nitrophenol.

The quantities v and w were determined by means of a plot
of vs. vs. as demonstrated in Fig. 2(b). TheA370 A350 A330evaluation according to eqns. (23a) and (23b) was carried out

Table 4 Aminolysis of Boc-gly-ONP (1] 10~4 M) and oNPA
(2] 10~4 M) with n-butylamine (6 ] 10~4 M) in acetonitrile as
solvent (25.0 ¡C) ; the reaction spectra were recorded with a diode
array spectrometer (Hewlett Packard 8453, Agilent Technologies) ;
evaluation according to eqns. (8a)È(8i). Evaluation of a plot of A370vs. vs. according to eqns. (23a), (23b) and (8d)È(8i),A350 A330 k1\

M~1 s~1 and M~1 s~12.8(0) k2\ 0.3(6)

j1/j2 370/350 370/330 350/330

k1/M~1 s~1 (2.1) 2.7(9) 2.7(5)
k2/M~1 s~1 0.3(9) 0.3(3) 0.3(5)

with the “singular value decomposition methodÏ (SVD).10,11
The coefficients of Z (see eqn. (23a)) lead to the requiredz

ijrate constants and according to eqns. (8d)È(8i) (the toler-k1 k2ance for was 5 E[ 5). The results are shown in Table 4 andz
ijcompared with those obtained by the classical “ two-

wavelengths evaluations Ï. Analysis of the individual reactions
((7a) and (7b)) measured separately led to the values1,9 k1\
2.86 M~1 s~1 and M~1 s~1.k2\ 0.35

5 General discussion
In general, the kinetic analysis of chemical reactions is carried
out by establishing the equations which model the presumed
mechanism. A series of linear and non-linear procedures have
been developed for the analysis of experimental data.12h20
Great mathematical e†orts were made to develop criteria for
the identiÐability and distinguishability of such systems.21h24
Dynamical systems which are described by linear and non-
linear di†erential equations are of special interest here.25h33

Knowledge of the linearly independent reaction steps (s)
establishing a mechanism is important for kinetic analysis.
The same modern multivariate procedures for analyzing
unknown mixtures can also be applied here.34h37 First-order
multivariate methods have been successfully applied (such as
partial least-squares regression (PLSR) methods and the prin-
cipal component regression (PCR) method).38h40 Neither the
reaction order nor the rate constants involved have to be
known.

The determination of the number s can also be obtained by
geometric analysis of the Mauser space as demonstrated in
Figs. 1(b) and 3(b). This procedure is signiÐcant and needs no
complex mathematical operations. The judgement of graphi-
cal results is both simple and meaningful. Additionally, the
information in the n-dimensional Mauser diagram can be con-
densed geometrically to principal quantities (v, w) that
describe spectroscopically the reaction system. These quan-
tities can be evaluated kinetically on the basis of di†erential
and integrated equations25h33 or by the method of formal
integration as shown here.

Systems consisting of Ðrst and/or second order reactions
can be characterized by Jacobian matrices.1,2,6,9,41 Their
eigenvalues are identical to those of the corresponding
matrices Z (compare equations (6a), (8a), (22a) and (23a)). The
matrix Z can be obtained from the corresponding Jacobian
matrix by a similarity transformation.1,2,6,9,41 Similar
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matrices have the same eigenvalues. Reversed, the matrix Z
which can be obtained spectroscopically leads to the eigen-
values of the Jacobian matrix which are searched for in
general.

According to theorem 2 given in refs. 1 and 41 two strictly
linear reaction systems whose Jacobian matrices have the
same rank can not be distinguished from each other by purely
spectroscopic means. And according to theorem 31,41 ther-
mally controlled reaction systems that consist of s linearly
independent reaction stepsÈone step of which is at least a
reaction of second orderÈcan not be distinguished from each
other by purely spectroscopic means if their eigenvalues have
the same functional dependence on the initial concentrations.
Because of these two theorems evaluation of the n-
dimensional Mauser space using the method described here is
generally applicable to cases s \ 1 and s \ 2 for linear and
non-linear reaction systems. Thus, for example, the following
systems can be evaluated here,

for s \ 1 : A¢ B

A] B, A] C

A] B¢ C

and for s \ 2 : A¢ B¢ C

A] B, C¢ D

A] B¢ C] D, E] F] D

A¢ B, B] C¢ D

The characteristic equations developed here are also true for
these systems (compare eqns. (17a), (18a), (22a), (22b), (23a)
and (23b)). However, the eigenvalues of the corresponding
system, instead of the rate constants, are then obtained by
kinetic analysis.

Kinetic evaluation of Scheme 3 represents a procedure
which is applicable to many linear reactions such as, for
example, A] B] C (s \ 2). As well, system (7a) and (7b) is
representative of about 100 mechanisms including second
order reactions (s \ 2).1,2,6,9,41 The practical examples chosen
here are appropriate to check the new evaluation procedure.

Comparison of efficiency between the formal integration
and more classic evaluation procedures has demonstrated the
preferred position of formal integration.1 Consequently, the
method presented here was only compared with the results
obtained earlier by formal integration. As shown here, the
results can even be improved when the n-dimensional Mauser
space is used in combination with formal integration. The cri-
teria for selecting appropriate wavelengths to establish the
Mauser space are essentially the same as those for the con-
struction of the Mauser diagrams.1,2

In the special case of linear reactions, a reduction of the
system is possible on the basis of the concept of parallel pro-
jection (s \ 2 ] s \ 1,5 s \ 3 ] s \ 2 ] s \ 14). The concept
of parallel projection is also true for Mauser space. Thus,
reaction systems with poor spectroscopic properties may be
more signiÐcantly analyzed by the combination of the Mauser
space with the concept of parallel projection.

The method of formal integration, according to H.
Mauser,1,2 enables the solution of kinetic problems on the
basis of linear regression even in the case of second order reac-
tions. For example, the (integral) concentration equations of
the reaction system A ] B] C] D are based on the beta
function.42 The application of eqn. (23a), which is true for
about 100 reaction mechanisms, is independent of such
complex functions. Thus, the simultaneous evaluation of
absorbances from several wavelengths possesses a potential
which has not yet been exhausted.

6 Conclusions
Mauser space is a powerful tool in the kinetic analysis of ther-

mally controlled reaction systems (as well as of quasi-linear
photoreactions).
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