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Spectroscopic—kinetic analysis of first and second order reactions on
the basis of multidimensional absorbance (A) diagrams
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The absorbance (A), absorbance difference (AD) and absorbance difference quotient (ADQ) diagrams are called
Mauser diagrams. Typically, these diagrams represent two-dimensional plots. The so-called Mauser space is
multidimensional (n > 2). The axes of this space are established by the absorbances or absorbance differences
of n wavelengths. A reaction system that consists only of one linearly independent reaction step (s = 1) leads to
a straight line in Mauser space. This line is obtained independent of the reaction order of the system. A
one-dimensional coordinate axis can be established which is orientated in the direction of the straight line
lying in the Mauser space (n > s). The distances of the individual measured points with regard to the origin of
the (one-dimensional) coordinate system can be evaluated kinetically. The procedure is demonstrated using
reactions of first and second order (s = 1; n = 4 and 6). A reaction system described by two linearly
independent steps (s = 2) leads to a curve in the Mauser space which lies on a plane. A two-dimensional
coordinate system can be introduced which lies in this plane. The coordinates of the Mauser curve with regard
to the established (two-dimensional) coordinate system can be evaluated kinetically. The procedure is shown
by evaluating reactions of first and second order (s = 2; n = 3 and 4). The advantages of geometric analysis of

Mauser space are discussed.

1 Introduction

Mauser diagrams are a powerful tool for the spectroscopic—
kinetic analysis of reaction systems.!~> The number (s) of lin-
early independent reaction steps can be determined by means
of these diagrams as shown in many examples.!-?> In addition
to this information being important for each reaction system
investigated spectroscopically, the (differential) geometric
analysis of the absorbance space (the so-called ‘Mauser
space’) opens up new perspectives for kinetic evaluation.>—>
Until now only two and three-dimensional Mauser spaces
were analyzed geometrically in kinetics. The first results of
evaluating multidimensional Mauser spaces are reported here.

2 The problem

The mechanism

k1
A ——— products (1)

represents the simplest reaction of first order (s =1). The
following differential absorbance equation is true here!+?

dA; =z,,dt +z,,4, dt (2a)
with
Z;0=kiA;, and z,; = —k, (2b)

A, is the absorbance at time ¢ and at wavelength 1. The term
A, is the absorbance for ¢t — co. The coefficients z,, and z,;
are constants that relate to the rate constant k; and A4, as
shown.

The mechanism
k1

A + B ——— products 3)

DOI: 10.1039/b006033j

represents a simple reaction of second order (s=1). In
analogy to eqn. (2)!+?
d4, =z,,dt + z,,(4, — A;o) dt
+ 2;5(A4; — Az0)* dt (4a)
with
Z,0 =kiagbo Q;, 2,1 = —ky(ag + by)
and

Z2 = k4/Q; (4b)

where A4,, is the absorbance at t >0 (4,, =4, (t > 0)); a,
and b, are the initial concentrations of A and B. Q, is a con-
stant that is a function of the absorbance coefficients ¢,; of
components and the pathlength of the cuvette.!+?

A linear reaction system consisting of two linearly indepen-
dent steps (s = 2) is represented by the following parallel reac-
tions

ki1

A ——— products (52)
ka
B ——— products (5b)
It is true here that'-?
dA=z,dt+Z A dt (6a)
with
s (2) o) 2 2)
dA, Z30 Zy1 Zaa
and
A
A= < A:) (6b)
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The determinant D and trace S of Z leads to k, , according to
D =zy1z5, — 215251 = kiky, (6¢)
S=1zy1+ 2= —(k; + k) (6d)
and

S +(S*—4D)'?

> (6e)

ki,

A, and A, are the absorbances at wavelength A; and 4,
(4, = AM, A, = A/lz)-
Finally, the two reactions (s = 2) of second order:

k1

A+B— »C+D (Ta)
k2
A+E — HF+G (7b)

obey the equations?'®

dA =z, dt + ZAA dt + YA4? dt (8a)

with
dd — (dA1>’ Zo = <Z10>’ 7= <Z11 Z12>’
da, 220 Z21 Z22
AA=<AA1>, Y=<y11 V12 J’13>,
A4, Y21 V22 Va3
A4?
AA?
AA? = 2 8b
AA;AA, (85)
where
AA,=A4,— A, (8c)

The rate constants k; and k, for (7a) and (7b) can be calcu-
lated by means of the determinant D and trace S of Z as
follows

D =zy125, — 215251 = kiky aglao + by + €o) (8d)
S =12zy1 + 235 = —ky(ag + bo) — kj(ag + €o) (8e)

and
—0,S + S)? —4 D]
k1’2= 0y _[(0'12) 66,03 D] . (8)
010,
where
01 = ag (ag + b + €) (8g)
0, =dag + by (8h)
03 =ay+ e. (81)

A,, is again the absorbance at t - 0 (4,, = 4, (t = 0)).

The coefficients z;; of eqns. (2a) and (4a) can be determined
by formal integration.’~® This is also true for z;; and y;; of z,,
Z and Y (see eqn. (8a)). The constants z;; lead to the rate con-
stants k; for the different reaction mechanisms shown by eqns.
(2b), (4b), (6e) and (8f).

The accuracy of the kinetic evaluation depends on how
spectroscopically perceptibly significant the individual reac-
tions are. When reactions exist which show poorly spectro-
scopic properties the kinetic evaluation may falter or even fail.
This situation may be overcome when several wavelengths (n)
that are distributed in the spectra registered are included
simultanously in the evaluation procedure (with n > s).
However, the differential absorbance equations presented
(compare eqns. (2a), (4a), (6a), (8a)) are only true for
absorbance values at s wavelengths. The modification of the
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presented differential absorbance equations that is true for n
wavelengths is shown subsequently. A practical example is
given for each reaction mechanism discussed above.

3 Reactions of first and second order consisting of
one independent step (s = 1)

3.1 Theory

The Mauser space is generated by the absorbance axes of (n)
different wavelengths. The absorbances change in dependence
on time, leading to a characteristic curve in Mauser space.
The absorbances are now represented by a vector 4 with the
coordinates (n > s)

Ay, Ay
A A

A=|""[={"? )
A;, A,

The vector A is time dependent. Selecting the vector A for
t — 0, the difference vector A4 can be established according to

A, — A,(t—0)
VIR EEENET
4, — At —0)
Ay — Ay AA,
[ A | _ [ A )
A -4, \aa,

Each reaction system consisting of one linearly independent
reaction (being of first or second order) leads to straight lines
in the absorbance (A) and absorbance difference (AD) dia-
grams as shown in refs. 1 and 2. Thus, the ratio of any two
AD values (A4;/AA)) in eqn. (10) is a constant

— =y (11)

It follows from this fact that a straight line is also obtained in
the n-dimensional AD or A diagram (n > s). The basic law
according to Lambert-Beer—Bouguer can be developed for the
dependence on concentrations or degrees of advancements
(X,).1>5: In the case of s = 1, the general equation (12) is true
for reactions of first and second order?!-?

AA,=0,X, (12)

where Q, is a constant for each wavelength (compare eqn.
(4b)). The introduction of eqn. (12) into eqn. (10) leads to

A4, 0,
AA

AM=|"7]= QF X, (13)
AAn Qn

It follows from this equation that
A3 =03 - 3
M= X (14)
A} =02 - x3

Each value of X, is dependent on time and so produces a
point in the n-dimensional AD diagram. The distances v
between the origin and these points which lie on a straight
line passing through the origin can be computed according to

v=[(A4,) + (A4,)* + -+ (A4,)*]'2 (15)
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One obtains from eqns. (14) and (15)

v=X,[0%+ Q3 +--- 01" (16)

Comparison of eqns. (12) and (16) shows that both A4, and v
are proportional to X ;. However, the factor of proportionality
of eqn. (16) is much larger than that of eqn. (12). Thus, an
improvement in spectroscopic evaluation should be achieved
when the Mauser space is applied.

Instead of eqns. (2a), (2b), (4a) and (4b) it is true here that

dv=p,, dt + p,,v dt (17a)

with
P, =k, and p,; = —k, (17b)

and
dv=p,, dt + p,,v dt + p,,v* dt (18a)

with

Do =k1agbo Q. P11 = —ki(ag + by), ps2 =ki/Q, (18b)

where v is the value of v for t > o0 and Q, is a constant
(which is not identical with Q,). Eqns. (17a) and (17b) can be
applied to evaluate linear reactions of rank one (s=1)
whereas eqns. (18a) and (18b) are true for second order reac-
tions (s = 1).

3.2 Practical examples (s = 1)

3.2.1 First order reaction. The spontaneous hydrolysis of
Boc-gly-ONP  (N-tert-butoxycarbonylglycine p-nitrophenyl

A 400

View Article Online

Table 1 Spectroscopic—kinetic analysis of hydrolysis reaction of Boc-
gly-ONP (7 x 1073 M); reaction conditions: 0.1 M borax buffer;
pH = 8.7; temperature 25 °C (see ref. 1); evaluation according to eqns.
(2a) and (2b). Mean value of k: 2.31 x 1072 s~!. Evaluation accord-
ing to eqns. (17a) and (17b) using the four-dimensional Mauser space
(A0 US. Aggo US- Asgo 0S. Azgp), kg =231 x 1073571

A/nm 420 400 380 290

k, x 103571 2.2(9) 2.3(3) 2.3(5) 2.2(6)

ester) has already been studied thoroughly in 0.1 M borax
buffer (pH = 8.7, temperature T = 25.0 °C).!~> The same reac-
tion (Scheme 1) was used here to test the method presented.

The reaction was spectroscopic—kinetically evaluated at the
wavelengths 420, 400, 380 and 290 nm according to routine
procedures and according to the new method. The results of
evaluation using eqns. (2a) and (2b) are shown in Table 1. As
well, the result obtained by eqns. (17a) and (17b) is presented
in Table 1. Obviously, nearly an optimal result was achieved
here using the four-dimensional Mauser space which contains
no time axis. The error in the coefficients could be determined
from eqn. (17a) by simulating the curve.!*? This error lay
between 0.2 and 1.5% for Scheme 1.

Geometric analysis of the Mauser space is of particular
interest in the case of s > 1. The geometric properties for the
case s =2 discussed subsequently can be understood better
when the position of the curve lying in the three-dimensional
Mauser space is considered systematically, starting with the
case s = 1. The absorbances of Scheme 1 lie on a straight line
in Fig. 1(a). When the coordinate system is rotated a position
can be found where the straight line is regarded as a single
point. The ‘size’ of this point gives information about how
strongly the points measured are scattered around the straight
line observed. According to Fig. 1(b), scattering is weakly pro-
nounced for the reaction shown in Scheme 1. In the case of
linear reactions (s = 1) the distance v can be related to any
point measured (1st, 2nd, ... nth point), meaning that 4, can
be replaced by 4, in eqn. (10) leading to a changed value A4
and, thus, to an altered value v, (see eqn. (15)).

3.2.2 Second order reaction. The aminolysis of Boc-gly-
ONP with n-butylamine using the solvent acetonitrile can be
described by the second order reaction shown in Scheme 2.
The reaction has already been studied in detail and the rate
constants were determined using the absorbances at six wave-
lengths (see Table 2).! The kinetic evaluation of the six-
dimensional Mauser space leads to a rate constant which lies
close to the mean value of the six rate constants obtained at
the individual wavelengths (see Table 2). The coefficients of
eqn. (18a) showed an error of about 0.4%.

(®)

Azgo 0.4

Fig. 1 Three-dimensional A diagrams for Scheme 1 (A4, Us. A4, US. A3go)- The absorbances measured lie on a straight line as shown by part
(a). (b) The situation when (a) is rotated until the viewer sees the line as a point. The significance of distance v is shown in part (a).
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4 Reactions of first or second order consisting of
two independent steps (s = 2)

4.1 Theory

Spectroscopically investigated reactions with two independent
steps (s =2) of first and/or second order are generally
described by means of two degrees of advancement (X, X,)
according to!+%:5-¢

Ad;=A; — Ao =0uX, + 012X, (19)

where A,,=A, (t—0); Q,; and Q,, are constants being
dependent on .12

A typical curve for X, vs. X, is shown in Fig. 2(a). The
curve is starting from the origin P, (¢t — 0) and is ending at
point P (t > o). A straight line can be constructed which
passes through P, and P'. P’ is a point which can be identical
with P_ or which lies near P, on the curve with points P
(P' = P). The line PP’ generates a new axis which is denoted
v'. A second axis, w', can be introduced which runs perpen-
dicularly to v" and which passes through P, (see Fig. 2(a)).
Thus, the new coordinate system with axes v" and w' is the
result of rotation of the old system with axes X, and X,. This
rotation represents an affine transformation. For example, the
eigenvalues (r; and r,) that characterize the curve are pre-
served during this transformation.

The transduction of Fig. 2(a) into the corresponding two-
dimensional absorbance diagram (4,, vs. 4,,) again represents
an affine transformation.’® Thus, the absorbance curve (4,,
vs. A;,) has the same characteristic properties (e.g. the same
eigenvalues of Z in eqn. (6a) or eqn. (8a)) as the corresponding
curve of X, vs. X,.=® This property of preservation is not
changed when n-dimensional Mauser diagrams (4,, vs. 4, vs.
.-+ A,,) are introduced.

A plot of A,, vs. A;, vs. A, (shortened to A, vs. A, vs. A3) is
shown in Fig. 2(b) for s = 2. Since, according to eqn. (19), each
value 4, depends on only two variables (X, X,) a curve is

Table 2 Aminolysis of Boc-gly-ONP (9 x 107> M) and n-
butylamine (9 x 10~5 M) in acetonitrile (temperature 25.0 °C; see ref.
1); evaluation according to eqns. (4a) and (4b). Mean value of k: 2.83
M~! s™1, Evaluation according to eqns. (18a) and (18b) using the
six-dimensional Mauser space (A3, US. Az1g US- Ayqq US. Aygs US.
Ao V5. Ayso) kg =2.82M st

A/nm 320 310 270 265 260 230

k/M~1s™1  280) 2708) 28(7) 28(5) 28(3) 2.8(6)
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Fig. 2 (a) X, vs. X, for reactions of two independent steps (s = 2).
The coordinate system with axes ' and w’ is obtained by rotation of
the system X, vs. X, around the origin. P, and P are the initial and
end points of reactions. P (as well P’) are points of the reaction
system. P’ may be P or may lie near to P (P’ = P). (b) A, vs. A, vs.
A5 . The points of a reaction system consisting of two linearly inde-
pendent reactions lie, generally, on a plane. P, and P, are the initial
and end points of reactions. Values of P are the time dependent points
(as well P'). P’ may be P, or may lie near to P, . The line P P’
generates the axis v. The axis w is perpendicular to v and lies in the
plane of the curve (P).

obtained in the three-dimensional absorbance space which lies
in a plane. The ‘original’ two-dimensional curve of diagram
A, vs. A5 (see Fig. 2(b)) can be directly constructed from the
three-dimensional curve by parallel projection when the pro-
jection rays have the same direction of axis 4; (or —A4,).
Thus, both curves of A, vs. A; and 4, vs. A, vs. A; can be
transduced into each other by an affine transformation. The
characteristic properties remain conserved, again. In analogy,
a curve on a plane in four-dimensional space (4 vs. A, vs. A3
vs. A,) can be transduced by parallel projection into the three-
dimensional space (4, vs. A, vs. A;). The characteristic quan-
tities of both curves are again identical. To summarize this
reflection, the characteristics of the curve are preserved when
the two- or n-dimensional absorbance space is evaluated (in
the case of s = 2).

By analogy to Fig. 2(a), a coordinate system with axes v and
w can be constructed which lies in the plane of the absorbance
curve (see Fig. 2(b)). The axis v passes through points P, and
P'. The axis w is orientated perpendicularly to v and runs
through P, (in principal, an orthogonal coordinate system is
not necessary here). The coordinates of P can be characterized
by means of axes v and w. To establish the corresponding
equations for P the following vectors are introduced:

a, Aip—Aqo
AMd=a=P,P=|:|= : , (20a)

S
[
N
(=]
-
[
[

(20b)
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Uy
v=P,P,=|: (20c)
Un
and
Wy
w=P,P=|: (204d)
w

The orthogonal projection of @ onto the axis v leads to the
vector v and its endpoint P, (v = P, P,, see Fig. 2(b)); w is the
direction vector P, P. The lengths of v and w are the required
quantities which can be obtained by basic vector algebra’-8

Dl =0=0 @]+ b2

with
= % (21a)
and
lw|=w=[(a; —v))*+(a, — v,)*]"?
with
v, =aby,..., v,=oab, (21b)

The quantities v and w can replace the role of 4; and 4, in
eqns. (6a) and (6b) and of AA; and A4, in eqns. (8a) and (8b).
When the same symbols (z;;) are used for the coefficients as in
eqns. (6a) and (6b), it is true for the system (5a) and (5b) that

dv=7z,dt + Z v dt (22a)

with

o= (e (2= Qo= () e
dw Z50 Zy1 Zap w
The coefficients z;; of Z generate a determinant (D) and trace
(S) in analogy to eqns. (6¢) and (6d) from which k, and k, can
be computed for system (5a) and (5b) according to eqn. (6e)
(even if the functional expressions of z; in eqns. (22a) and
(22b) are not identical with those in eqns. (6a) and (6b)). The
eigenvalues of Z for system (5a) and (5b) are r;, = —k,; and
r, = —k,.

Instead of eqns. (8a) and (8b) it holds that (using the same
symbols z;; and y;; for the coefficients)

dv=7z,dt+ Zvdt+ Yo dt (23a)
with
do — <du>, 2= <Z10>, Z— <211 Z12>’
dw Z20 Z21 Z22
0= <U>’ Y — (yu V12 Y13>
w Y21 Y22 Va3
and
02
2 _ |2
A (23b)
oW

By means of z;; from Z the quantities D and S can be estab-
lished, in analogy to eqns. (8d) and (8e) for system (7a) and
(7b), leading to k, and k, with the help of eqn. (8f) (even if the
coefficients z;; and y;; in eqns. (23a) and (23b) are not identical
with those of eqns. (8a) and (8b)).

View Article Online

4.2 Practical examples (s = 2)

4.2.1 First order reactions. The simultaneous hydrolyses of
Boc-gly-ONP and oNPA (o-nitrophenyl acetate) have been
studied in detail in refs. 1, 3 and 5 using a 0.1 M borax buffer
(pH = 8.7; temperature 25.0°C) (Scheme 3). ADQ diagrams
can be plotted to determine the number (s) of linearly indepen-
dent reactions.!'> When straight lines are obtained for differ-
ent wavelength combinations the case s=2 is realized
obeying, generally, the following functional relationship
A =123)"2

My _ Ay 240
— —_— a
A4, AT %Ay
with
Ad, = A, — Ay (24b)

Rearrangement of this equation leads to
Ay =044, +ay Ay — 03 Ay0 — 03 Aze + Ay (25

The last equation represents a plane on which the three-
dimensional curve lies in a diagram of 4, vs. 4, vs. A;. The
corresponding plot for Scheme 3 is shown in Fig. 3(a). Obvi-
ously, the curve lies on a plane. To confirm this assumption,
the coordinate system is rotated until the edge of the plane is
seen. From this viewpoint, the curve represents a straight line
(Fig. 3(b)). This procedure demonstrates that 3D plots can be
also used directly instead of two-dimensional ADQ diagrams.
The advantage of such 3D plots is that problems are avoided
here which can appear in ADQ diagrams (strongly scattering
points and artefacts, see for example, refs. 1 and 2).

The reaction system of Scheme 3 can be described by eqns.
(5a) and (5b). The results of evaluation according to eqns.
(6a)—(6e) are given in Table 3.

The quantities v and w were determined in the diagram
Aypo VS. Azgo US. Aygg US. Ayeo as demonstrated in Fig. 2(b).
The plot v vs. w obtained is shown in Fig. 4. Evaluation of the
time dependence data of v and w according to eqns. (22a),
(22b), (6c)—(6e) leads to nearly ‘ideal’ mean values of k, and k,
which can be computed from all possible two-wavelengths
combinations as shown in Table 3. The coefficients of eqn.
(22a) showed an error which was less than 0.5%.

(e}
PR 0
WY
H o
N02
Boc-gly-ONP
kq
(H20)

ﬁokn/ﬁg‘)“

Boc-glycine

HOONOZ

p-nitrophenol

ONPA o-nitrophenol acetic acid

Scheme 3
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Fig. 3 (a) A4y US. Asgq US. A, for Scheme 3 (the indices indicate the wavelengths used). (b) Rotation of part (a). The curve lies on a plane and is
viewed along the edge of this plane. The result is a straight line indicating the case s = 2.

Table 3 Spontaneous hydrolysis of Boc-gly-ONP and oNPA in 0.1 M borax buffer (pH 8.7; temperature 25.0 °C; see refs. 1, 3 and 5); evaluation
according to eqns. (6a)—(6e). Mean value of k; = 1.73 x 10™* s~1. Mean value of k, = 2.07 x 1073 s~*. Evaluation of diagram A,,, vs. A54, vs.
A o0 5. A, according to eqns. (22a), (22b) and (6¢)—(6e), k; = 1.7(3) x 107* s~ and k, = 2.0(7) x 10735711

Published on 28 February 2001. Downloaded by University of Chicago on 28/10/2014 13:14:32.

Aifhs 420/380 420/290 420/260 380/290 380/260 290/260

k, x 10%/s71 1.6(7) 1.703) 1.7(4) 17(5) 17(2) 1.7(4)

ky x 103/s™1 2.0(0) 2.009) 2.1(2) 2.0(7) 2.0(5) 2.0(8)
0.2

with the ‘singular value decomposition method’ (SVD).10-11

The coefficients z;; of Z (see eqn. (23a)) lead to the required
rate constants k; and k, according to eqns. (8d)—(8i) (the toler-
ance for z;; was 5 E — 5). The results are shown in Table 4 and
compared with those obtained by the classical ‘two-

w 0.1 1
wavelengths evaluations’. Analysis of the individual reactions
((7a) and (7b)) measured separately led to the values':® k; =
e 286 M~ ts tand k, =035M"ts7L
t
0 ‘ ‘ ‘ ‘ 5 General discussion
0 0.5 1 15 2 In general, the kinetic analysis of chemical reactions is carried

Fig. 4 Plot v vs. w for Scheme 3. The coordinates v and w have been
obtained from a plot of A,,q vs. A3gq US. Aygq US. Aygq (as explained
in Fig. 2(b)).

4.2.2 Second order reactions. Boc-gly-ONP and oNPA
react with n-butylamine in acetonitrile as solvent according to
the mechanism?!-®

out by establishing the equations which model the presumed
mechanism. A series of linear and non-linear procedures have
been developed for the analysis of experimental data.!?—2°
Great mathematical efforts were made to develop criteria for
the identifiability and distinguishability of such systems.?!—24
Dynamical systems which are described by linear and non-
linear differential equations are of special interest here.25—33
Knowledge of the linearly independent reaction steps (s)
establishing a mechanism is important for kinetic analysis.

k1 The same modern multivariate procedures for analyzing
A+B—C+D (7a) unknown mixtures can also be applied here.3*—37 First-order
multivariate methods have been successfully applied (such as

A+E k2 F4+G (7b) partial least-squares regression (PLSR) methods and the prin-

The components are: A = n-butylamine; B = Boc-gly-ONP;
C = t-Boc-glycine-n-butylamide; D = p-nitrophenol; E =
oNPA; F = N-acetyl-n-butylamide; G = o-nitrophenol.

The quantities v and w were determined by means of a plot
of A3;o vS. Asso US. A3z, as demonstrated in Fig. 2(b). The
evaluation according to eqns. (23a) and (23b) was carried out

Table 4 Aminolysis of Boc-gly-ONP (1 x 10°* M) and oNPA
(2 x 107* M) with n-butylamine (6 x 10"% M) in acetonitrile as
solvent (25.0°C); the reaction spectra were recorded with a diode
array spectrometer (Hewlett Packard 8453, Agilent Technologies);
evaluation according to eqns. (8a)—(8i). Evaluation of a plot of A5,
vs. Azso US. Az30 according to eqns. (23a), (23b) and (8d)—(8i), k, =
280)M~*s tandk, =036)M~1s!

cipal component regression (PCR) method).>8~#® Neither the
reaction order nor the rate constants involved have to be
known.

The determination of the number s can also be obtained by
geometric analysis of the Mauser space as demonstrated in
Figs. 1(b) and 3(b). This procedure is significant and needs no
complex mathematical operations. The judgement of graphi-
cal results is both simple and meaningful. Additionally, the
information in the n-dimensional Mauser diagram can be con-
densed geometrically to principal quantities (v, w) that
describe spectroscopically the reaction system. These quan-
tities can be evaluated kinetically on the basis of differential
and integrated equations?>—33 or by the method of formal
integration as shown here.

Systems consisting of first and/or second order reactions

A/Ay 370/350 370/330 350/330 can be characterized by Jacobian matrices.!*>5%4! Their

I eigenvalues are identical to those of the corresponding
ky/M™" s~ (2.1) 2.709) 2.7(5) matrices Z (compare equations (6a), (8a), (22a) and (23a)). The
ky/M~1s1 0.3(9) 0.3(3) 0.3(5)
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matrix Z can be obtained from the corresponding Jacobian
matrix by a similarity transformation.!>¢-41  Similar
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matrices have the same eigenvalues. Reversed, the matrix Z
which can be obtained spectroscopically leads to the eigen-
values of the Jacobian matrix which are searched for in
general.

According to theorem 2 given in refs. 1 and 41 two strictly
linear reaction systems whose Jacobian matrices have the
same rank can not be distinguished from each other by purely
spectroscopic means. And according to theorem 3*! ther-
mally controlled reaction systems that consist of s linearly
independent reaction steps—one step of which is at least a
reaction of second order—can not be distinguished from each
other by purely spectroscopic means if their eigenvalues have
the same functional dependence on the initial concentrations.
Because of these two theorems evaluation of the n-
dimensional Mauser space using the method described here is
generally applicable to cases s =1 and s = 2 for linear and
non-linear reaction systems. Thus, for example, the following
systems can be evaluated here,

fors=1: Ae2B
A-B, A-C
A+B=2C
and fors=2: A2B=2C
A-B, C2D

A+B2C+D,E-F+D
A=2B, B+ C=2D

The characteristic equations developed here are also true for
these systems (compare eqns. (17a), (18a), (22a), (22b), (23a)
and (23b)). However, the eigenvalues of the corresponding
system, instead of the rate constants, are then obtained by
kinetic analysis.

Kinetic evaluation of Scheme 3 represents a procedure
which is applicable to many linear reactions such as, for
example, A > B - C (s = 2). As well, system (7a) and (7b) is
representative of about 100 mechanisms including second
order reactions (s = 2).1:>%-941 The practical examples chosen
here are appropriate to check the new evaluation procedure.

Comparison of efficiency between the formal integration
and more classic evaluation procedures has demonstrated the
preferred position of formal integration.! Consequently, the
method presented here was only compared with the results
obtained earlier by formal integration. As shown here, the
results can even be improved when the n-dimensional Mauser
space is used in combination with formal integration. The cri-
teria for selecting appropriate wavelengths to establish the
Mauser space are essentially the same as those for the con-
struction of the Mauser diagrams.!+2

In the special case of linear reactions, a reduction of the
system is possible on the basis of the concept of parallel pro-
jection s=2—-s=1° s=3—>5=2-5=1%. The concept
of parallel projection is also true for Mauser space. Thus,
reaction systems with poor spectroscopic properties may be
more significantly analyzed by the combination of the Mauser
space with the concept of parallel projection.

The method of formal integration, according to H.
Mauser,!'? enables the solution of kinetic problems on the
basis of linear regression even in the case of second order reac-
tions. For example, the (integral) concentration equations of
the reaction system A + B —> C — D are based on the beta
function.*?> The application of eqn. (23a), which is true for
about 100 reaction mechanisms, is independent of such
complex functions. Thus, the simultaneous evaluation of
absorbances from several wavelengths possesses a potential
which has not yet been exhausted.

6 Conclusions

Mauser space is a powerful tool in the kinetic analysis of ther-
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mally controlled reaction systems (as well as of quasi-linear
photoreactions).
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