SYNTHESIS OF 2-AMINO-3,8-DIMETHYLIMIDAZO[4,5-f]QUINOXALINE (Me-IQx), A POTENT MUTAGEN ISOLATED FROM FRIED BEEF

Hiroshi KASAI, Tomoko SHIOMI, Takashi SUGIMURA and Susumu NISHIMURA Biology Division and $\dot{\gamma}$ Biochemistry Division, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104

A potent mutagen, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (Me-IQx), isolated from fried beef and its 3,7-dimethyl derivative were synthesized from 6-amino-3-methylquinoxaline and 6-amino-2-methylquinoxaline, respectively. These compounds showed strong mutagenic activity towards Salmonella typhimurium TA98 in the presence of S9 Mix.

We previously reported isolation of a new mutagenic compound from fried beef and its structural determination as 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (Me-IQx, structure 1)¹). It is an aza-derivative of the mutagenic compounds 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (Me-IQ), which were previously isolated from broiled sardines $^{2-5}$). For the final assignment of the structure of Me-IQx and for further studies on its biological properties, it was necessary to synthesize chemically Me-IQx and its isomer having a methyl group in the 7-position in place of the 8-position. In this communication, we report a chemical synthesis of the mutagen Me-IQx and its isomer.

Me-IQx (1) was synthesized from 6-amino-2-methylquinoxaline (2) as shown in scheme 2 by a similar procedure to that used for the synthesis of IQ^3) and Me-IQ⁵). The starting material for this synthesis, compound 2, was prepared by condensation of 1,2,4-triaminobenzene with methylglyoxal by the method of Klicnar and Kosek⁶). Contrary to their finding⁶) that only 6-amino-3-methylquinoxaline (2) was formed as a reaction product, in our experiment compound 2 and its isomer 3 were produced in about equal proportions. These products were separated by high pressure liquid chromatography on a TSK-GEL LS-410 column. Structural assignments of these compounds were

Scheme 1

Scheme 2

made by comparison of their properties with those of an authentic sample of compound 3, prepared separately by reduction of 2-methyl-6-nitroquinoxaline (4) which was obtained by condensation of 1,2-diamino-4-nitrobenzene with methylglyoxal (Scheme 1). In the latter condensation reaction, the more basic 2-amino-group reacts with the aldehyde group in methylglyoxal by nucleophilic addition to give a single product 4 and the structure of its reduction product 3 was established previously by unequivocal synthesis from 2,4-dinitrophenylalanine⁶⁾.

Compound 2, thus obtained, was first converted to the tosyl derivative 5 and nitrated with HNO₃-AcOH mixture to afford compound 6, which was hydrolyzed with H₂SO₄ to yield 6-amino-3-methyl-5-nitroquinoxaline (7). Compound 7 was then treated with NaH and methylated with CH₃I to afford compound 8. Then compound 8 was reduced to 5-amino derivative with Fe-HCl mixture and the neutralized reaction mixture was treated with BrCN to afford compound 1. UV (λ_{max}^{MeOH} , ϵ):214 (24,300), 274 (41,100), 240 (3,900); NMR (δ_{CDCl_3} , J): 8.65 ppm (1H, s, 7-H), 7.75 (1H, d, 9Hz, 5-H), 7.51 (1H, d, 9Hz, 4-H), 4.88 (2H, s, broad, -NH₂), 3.69 (3H, s, N-CH₃), 2.80 (3H, s, C-CH₃).

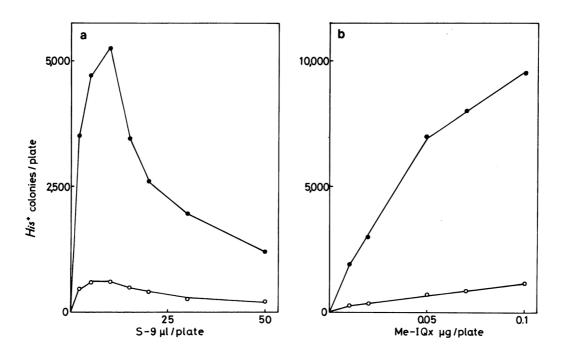


Fig. 1. Mutagenicity of Me-IQx to S. typhimurium.

- a: The mutagenicity of 0.05 μg of Me-IQx was tested with various amounts of S9. • TA98; 0—0 TA100.
- b: Dose-response curve for mutagenicity obtained with S9 Mix containing 10 μ1 S9.

 TA98; ο—ο TA100.

In the same fashion, 2-amino-3,7-dimethylimidazo[4,5-f]quinoxaline (9), an isomer of Me-IQx, was synthesized from 6-amino-2-methylquinoxaline (3). UV (λ_{max}^{MeOH} , ϵ): 214 (29,000), 274 (42,000), 237 (4,000); NMR (δ_{CDC1_3} , J): 8.74 ppm (1H, s, 8-H), 7.73 (1H, d, 9Hz, 5-H), 7.60 (1H, d, 9Hz, 4-H), 5.10 (2H, s, broad, -NH₂), 3.72 (3H, s, N-CH₃), 2.77 (3H, s, C-CH₃).

Synthetic compound 1 showed strong mutagenic activity towards Salmonella typhimarium with metabolic activation by microsomal enzymes (S9), as shown in Fig. 1a. The specific activities of Me-IQx towards TA98 and TA100 were 145,000 and 14,000 revertants/ μ g respectively under optimal conditions (Fig. 1b). The isomer of Me-IQx, compound 9, also showed strong mutagenic activity towards TA98 and TA100 (146,000 and 26,000 revertants/ μ g, respectively). The mutagenic activities of these imidazoquinoxaline derivatives are weaker than those of IQ³) and Me-IQ⁵). Large scale synthesis of Me-IQx for carcinogenic tests and for examination of its other biological activities is now in progress.

Acknowledgements

We thank Dr. S. Yokoyama, University of Tokyo, for measurements of NMR spectra and Dr. Z. Yamaizumi of our institute for measurements of mass spectra.

References

- H. Kasai, Z. Yamaizumi, T. Shiomi, S. Yokoyama, T. Miyazawa, K. Wakabayashi, M. Nagao,
 T. Sugimura, and S. Nishimura, Chem. Lett. 1981, 485.
- 2) H. Kasai, Z. Yamaizumi, K. Wakabayashi, M. Nagao, T. Sugimura, S. Yokoyama, T. Miyazawa, N.E. Spingarn, J.H. Weisburger, and S. Nishimura, *Proc. Japan Acad.* 56B, 278 (1980).
- H. Kasai, S. Nishimura, K. Wakabayashi, M. Nagao, and T. Sugimura, Proc. Japan Acad. 56B, 382 (1980).
- 4) H. Kasai, Z. Yamaizumi, S. Nishimura, K. Wakabayashi, M. Nagao, T. Sugimura, N.E. Spingarn, J.H. Weisburger, S. Yokoyama, and T. Miyazawa, *J. Chem. Soc. Perkin Transaction I*, in press.
- 5) H. Kasai, Z. Yamaizumi, K. Wakabayashi, M. Nagao, T. Sugimura, S. Yokoyama, T. Miyazawa, and S. Nishimura, *Chem. Lett.* 1980, 1391.
- 6) J. Klicnar and F. Kosek, Collection Czechoslov. Chem. Commun. 30, 3102 (1965).

(Received March 31, 1981)