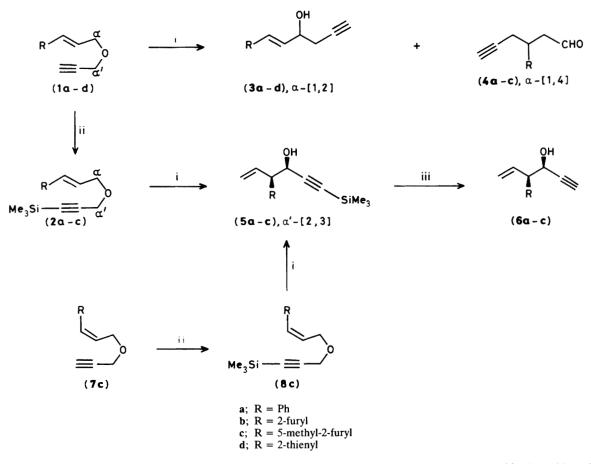
Switching of the Reaction Pathway for [1,2]/[1,4]- and [2,3]-Wittig Rearrangements of 3-Aryl-2-propenyl Propargyl Ethers

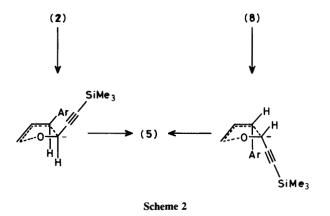
Kenji Hayakawa, Ayumi Hayashida, and Ken Kanematsu*


Institute of Synthetic Organic Chemistry, Faculty of Pharmaceutical Sciences, Kyushu University 62, Maidashi, Higashi-ku, Fukuoka 812, Japan

3-Aryl-2-propenyl propargyl ethers (1) undergo the [1,2] (and [1,4]) sigmatropic rearrangement periselectively on treatment with BuⁿLi at -78 °C, whereas the silylated derivatives (2) perform exclusively the [2,3]-Wittig rearrangement.

The sigmatropic rearrangements of α -metallated allyl ethers (the Wittig rearrangements)¹ are of current interest for their versatile applications to organic synthesis.^{2—5} However, in contrast to the well-documented synthetic utility of the [2,3]-Wittig rearrangement,^{2—4} the [1,2]-Wittig rearrangement has gained less attention due to the general lower yields of this reaction.⁵ The control elements of the periselectivity of these anionic rearrangements also need to be investigated. Herein, we report on a highly periselective anionic [1,2]/[1,4]sigmatropic rearrangement of 3-aryl-2-propenyl propargyl ethers (1) as well as a remarkable effect of the silyl-substituent for switching of reaction pathway.

During the course of our studies on the base-catalysed pericyclic reactions of various propargyl ethers,⁶ we found an efficient sigmatropic rearrangement of the dianions of 3-aryl-2-propenyl propargyl ethers (1; R = aromatic) with unusual periselectivity, *i.e.* it only underwent the [1,2] (and [1,4]) sigmatropic rearrangement, although the [2,3] sigmatropic rearrangement is much more common to this class of compound, *e.g.* (1; R = H or alkyl).^{3,7} Thus, treatment of


1109

Scheme 1. Reagents and conditions: i, BuⁿLi (2.3 equiv.), THF, -78 °C; ii, BuⁿLi (1.0 equiv.), THF, -78 °C, then chlorotrimethylsilane (3.0 equiv.); iii, CsF, MeOH-H₂O (9:1), room temp.

(E)-cinnamyl propargyl ether (1a) with 2.3 equiv. of BuⁿLi in tetrahydrofuran (THF) at -78 °C resulted in a rapid reaction to give the [1,2] rearrangement product (3a) (67%)[†] and the [1,4] rearrangement product (4a) (13%)[†] (Scheme 1). Both sigmatropic rearrangements were considered to arise from the α -lithiated (1a) (α -[1,2] and α -[1,4]) presumably due to the increased stabilization of the α -carbanion through conjugation with the aromatic ring. Similarly, (E)-ethers (1b-d) and the (Z)-ether (7c), prepared from (E)-3-(5-methyl-2-furyl)acrylate by photochemical *trans/cis* isomerization, followed by LiAlH₄ reduction and propargylation, only underwent the α -[1,2] (and α -[1,4]) sigmatropic rearrangements (Table 1).

In sharp contrast, the similar base-treatment of the silylated (*E*)-ethers (**2a**—c), prepared from (**1a**—c) [BuⁿLi (1 equiv.), Me₃SiCl, -78 °C], resulted in exclusively the α' -[2,3] sigma-tropic rearrangement in a high degree of *erythro* selectivity

(>95%, 270 MHz ¹H n.m.r.)⁸[‡] to give (**5a**–c)[†] in good yields (Table 1). Interestingly, the (Z)-ether (**8c**), prepared from (**7c**), also underwent the *erythro*-selective α' -[2,3] sigmatropic rearrangement to give the same product as (E)-(**2c**) [(**5c**)] (Scheme 1), suggesting a preference for the *cis*-relationship of the aromatic ring and propargyl group in the α' -[2,3] transition

⁺ All new compounds gave satisfactory analytical and spectral data. For example, (**3a**): i.r. ν_{max} 3380, 3280, 2160 cm⁻¹; ¹H n.m.r. δ (CDCl₃) 6.64 (d, *J* 16.0 Hz, 1H), 6.20 (dd, *J* 16.0, 6.0 Hz, 1H), 4.40 (m, 1H), 2.49 (dd, *J* 6.0, 3.0 Hz, 2H), 2.05 (t, *J* 3.0 Hz, 1H).

⁽⁴a): i.r. v_{max} 3280, 2360, and 1730 cm⁻¹; iH n.m.r. δ 9.71 (t, J 1.5 Hz, 1H), 3.47 (m, 1H), 2.91 (m, 2H), 2.53 (dd, J 6.5, 3.0 Hz, 2H), 2.00 (t, J 3.0 Hz, 1H).

⁽⁶a): i.r. v_{max} 3400, 3280, and 2100 cm⁻¹; ¹H n.m.r. δ 6.18 (ddd, J 17.9, 10.4, 8.2 Hz, 1H), 5.27 (dm, J 10.4 Hz, 1H), 5.23 (dm, J 17.9 Hz, 1H), 4.59 (dd, J 6.5, 2.1 Hz, 1H), 3.60 (dd, J 8.2, 6.5 Hz, 1H), 2.44 (d, J 2.1 Hz, 1H), 2.09 (br s, D₂O-exchange, 1H); high resolution mass spectrum for C₁₂H₁₂O calc. *m/z* 172.0888, found 172.0914.

[‡] It is well established that the proton of *erythro* isomers attached to the C-OH group in 2-alkyl-3-hydroxycarbonyl compounds resonates at lower fields than those in *threo* isomers. In addition, the coupling constants (J ca. 3.0-6.5 Hz) of the *erythro* isomers appear smaller than those in the *threo* isomers (J ca. 7.0-9.0 Hz).

Table 1. BunLi catal	vsed rearrangement	of (1).	(2). (7), and (8), ^a
Table I. Du Li calu	yseu rearrangemen		(<i>4</i>), (/ /, unu (0/.

Compound	(3) , [1,2]	Product, % Yield ^b (4), [1,4]	(5), ^c [2,3]
(1a)	67	13	
(1b)	64	16	
(1c)	54	22	
(1d) ^d	19	_	
(2a)			85
(2b)			53
(2c)			62
(7c)	67°	12	
(8c)			73

^a All reactions were carried out in THF at -78 °C using 2.3 equiv. of BuⁿLi (30 min—1 h). ^b Isolated yields. ^c 95% *Erythro* by the 270 MHz ¹H n.m.r. analysis. ^d A large amount of the starting material (~70%) was recovered unchanged, even with 3 equiv. of BuⁿLi. ^e E/Z = 2:1.

states regardless of the alkene geometry of the starting materials (Scheme 2). The clean-cut change of persiselectivity between (1) [or (7)] and (2) [or (8)] may be mainly attributed to the α' -carbanion stabilizing effect (vinylagous α -effect) of silicon in (2) and (8), since the similar reaction of 2-butynyl (*E*)-3-(5-methyl-2-furyl)-propenyl ether gave a 1:2 mixture of α -[1,2] and α' -[2,3] rearrangement products.

Desilylation (CsF, MeOH-H₂O, r.t.) of (**5a**-c) afforded almost quantitative yields of (**6a**-c),[†] a formal α' -[2,3] sigmatropic rearrangement product of (1) (Scheme 1).

The above results provide a new method to control periselectivity in the base-catalysed sigmatropic rearrange-

ments of (1). Indeed, the [1,2] products thus obtained may serve as the useful synthetic intermediates for the synthesis of the natural product secofurance emophilane.⁹

J. CHEM. SOC., CHEM. COMMUN., 1988

Received, 22nd February 1988; Com. 8/00669E

References

- 1 V. Scholkopf, Angew. Chem., Int. Ed. Engl., 1970, 9, 763; T. Nakai and K. Mikami, Chem. Rev., 1986, 86, 885.
- 2 W. C. Still and A. Mitra, J. Am. Chem. Soc., 1978, 100, 1927; W. C. Still, J. H. McDonald, III, D. B. Collum, and A. Mitra, *Tetrahedron Lett.*, 1979, 593.
- 3 T. Nakai, K. Mikami, S. Taya, and Y. Fujita, J. Am. Chem. Soc., 1981, 103, 6492; K. Mikami, S. Taya, Y. Fujita, and T. Nakai, J. Org. Chem., 1981, 46, 5447.
- 4 J. A. Marshall, J. Lebreton, B. S. Dettoff, and T. M. Jenson, *Tetrahedron Lett.*, 1987, 28, 723; J. A. Marshall and J. Lebreton, *ibid.*, p. 3323.
- 5 V. Rautenstrauch, G. Buchi, and H. Wuest, J. Am. Chem. Soc., 1974, 96, 2576; B. H. Lee, A. Biswas, and M. J. Miller, J. Org. Chem., 1986, 51, 106; S. L. Schreiber and M. T. Goulet, Tetrahedron Lett., 1987, 28, 1043.
- 6 K. Hayakawa, M. Yodo, S. Ohsuki, and K. Kanematsu, J. Am. Chem. Soc., 1984, 106, 6735; K. Hayakawa, Y. Yamaguchi, and K. Kanematsu, Tetrahedron Lett., 1985, 26, 2689; Y. Yamaguchi, K. Hayakawa, and K. Kanematsu, J. Chem. Soc., Chem. Commun., 1987, 515.
- 7 N. Sayo, F. Shirai, and T. Nakai, Chem. Lett., 1984, 255; K. Mikami, T. Maeda, and T. Nakai, Tetrahedron Lett., 1986, 27, 4189.
- 8 C. H. Heathcock, C. T. Buse, W. A. Kleschick, M. C. Pirrung, J. E. Sohn, and J. Lampe, J. Org. Chem., 1980, 45, 1066.
- 9 K. Hayakawa, F. Nagatsugi, and K. Kanematsu, J. Org. Chem., 1988, 53, 860.