Selective Catalytic Oligomerizations and Hydrogenations Using Polymer-anchored Complexes of Nickel and Iridium

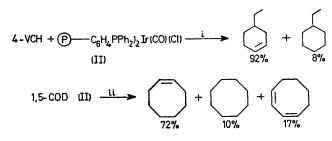
By STEPHEN E. JACOBSON and CHARLES U. PITTMAN, Jr.*

(Department of Chemistry, The University of Alabama, University, Alabama 35486)

Summary Polystyrene-divinylbenene resin-anchored [Ni(CO)₂(PPh₃)₂] has been used selectively to oligomerize butadiene to either 4-vinylcyclohexene or cyclo-octa-1,5-diene, and anchored [Ir(Cl)(CO)(PPh₃)₂] selectively catalyses the hydrogenation of cyclo-octa-1,5-diene to cyclo-octene; the activity of these catalysts in some cases surpasses that of their homogeneous counterparts under identical conditions.

ANCHORING homogeneous catalysts on to resins to give a fixed-bed catalyst which has the selectivity of the original homogeneous species is receiving increased attention.¹ Cyclo-oligomerization of butadiene by $[Ni(CO)_2(PPh_3)_2]$ gives 4-vinylcyclohexene (4-VCH; 30%), cyclo-octa-1,5-diene (1,5-COD; 60%), and cyclododeca-1,5,9-triene (1,5,9-CDT; 10%).^{2,3} The product distribution could be varied by using carbon monoxide or phosphites.²

We now report that butadiene was selectively converted into 4-VCH (98%) using either $[Ni(CO)_2(PPh_3)_2]$ or its resin-anchored form, (I) (styrene-1% divinylbenzene 1.33% P, P:Ni = 2:1) in the presence of CO (10 lb in²) in tetrahydrofuran (THF) or benzene at 115 °C (Scheme 1). CO slows the oligomerization. The rate using (I) was ca. 30% of the rate using $[Ni(CO)_2(PPh_3)_2]$ under these con-


ditions in benzene, presumably owing to diffusion limitations. In multiple runs (4 recycles) the molar turnover with (I) was >2000 in benzene and *ca*. 1000 in THF, which caused leaching of Ni from (I) which was slowed using a 2%divinylbenzene resin (Ia) (1.75% P, P: Ni = 2:1).

SCHEME 1. i, tri-o-tolyl phosphite; 115 °C, C_6H_6 ; ii, CO (10 lb in²), 115 °C, THF or C_6H_6 .

Commercial styrene-divinylbenzene (Bio Rad Labs, SX-1 or SX-2 resins, 200—400 mesh) was brominated (dark) using Br_2 -Fe Br_3 and then treated with excess of LiPPh₂ or NaPPh₂ in THF to provide a series of resins with 0.7—4.0% P.^{1,4} The metal complexes were anchored by simple phosphine exchange with multiple anchoring to the polymer prevailing.^{1,5}

Butadiene was also converted selectively (92%) into 1,5-COD using (Ia) with a 4 mol. excess of tri-o-tolyl phosphite in benzene (Scheme 1). The product distribution was identical using $[Ni(CO)_2(PPh_3)_2]$ in place of (Ia) and

the rate was 3 times that with (Ia). At the maximum molar turnover (>1300) the v(CO) i.r. bands had disappeared. The activity was determined in a fixed-bed operation. The catalyst (Ia) was deactivated on recycling.

Scheme 2. i, C_6H_6 , 80 °C, H_2 (100 lb in²), 1.75 h; ii, H_2 (100 lb in²), 90 °C, DMF, 2 h.

Anchored Vaska's complex (II) selectively catalysed the hydrogenation of 4-VCH to 4-ethylcyclohexene (92%) and 1,5-COD to cyclo-octene (72%) under the conditions in Scheme 2. Resin (II) (1% divinylbenzene, 1.25% P, P: Ir = 7:1) at first catalysed this reaction at a rate of 0.6 that of [Ir(CO)(Cl)(PPh₃)₂ used homogeneously (benzene; 80 °C; 100 lb in² H_2). After one cycle, the hydrogenation rate using (II) increased to 1.5 times the rate using the homogeneous catalyst at 80 °C. On a third recycle at 70 °C, the rate using (II) was 6 times that of the homogeneous reaction at 70 °C. This suggests an $Ir(H_2)$ intermediate is formed which is stabilized in the matrix relative to its homogeneous counterpart. Setting aside (II) for 1 week after the third recycle resulted in a rate, on the fourth recycle, only twice

that of the homogeneous rate at 70 °C. Both (II) and Vaska's complex lose their selectivity at higher H₂ pressures and long reaction times (complete formation of ethylcyclohexane at 100 °C; 300 lb in² H₂; 24 h). Catalyst (II) was repeatedly recycled without loss of activity or selectivity.

Co-ordinating solvents, i.e. dimethylformamide (DMF), are known to enhance catalytic hydrogenation activity with the [Ir(CO)(X)(PPh₃)₂] and Rh catalysts.⁶ [Ir(Cl)(CO)-(PPh₃)₂] catalysed the hydrogenation of cyclohexa-1,3and -1,4-diene to cyclohexene in dimethylacetamide.⁷ Thus 1,5-COD was hydrogenated over resin (II) in DMF (90 °C; 100 lb in² H₂; 2 h) to give 70-80% cyclo-octene. Resin (II) was repeatedly recycled without loss of activity (molar turnover > 4000). Cyclo-octa-1,3-diene was isolated as an intermediate in each case (conjugated dienes were previously observed in related reductions⁸). After the first recycle, the rate using (II) was 3 times that using $[Ir(CO)(Cl)(PPh_3)_2]$ homogeneously (90 °C; 100 lb in²). The bright yellow (II) becomes a dark green solid upon repeated recycling. An i.r. band at 2060 cm⁻¹ in addition to v(CO) at 1950 cm⁻¹ of (II) indicated the presence of CO trans to Ir-co-ordinated DMF, in accord with the expected trans effect⁹ and the following structure.

-C6H2PPh2) Ir (CO)(CI)(DMF)

The National Science Foundation and the Office of Naval Research are thanked for support.

(Received, 21st October 1974; Com. 1303.)

¹G. O. Evans, C. U. Pittman, Jr., R. T. Beach, and R. Jones, J. Organometallic Chem., 1974, 67, 295; J. C. Bailar, Catalysis Rev. 1974, 10(1), 17.

- ² G. Wilke, Angew. Chem. Internat. Edn., 1963, 2, 105.

- ³ H. Muller, D. Wittenberg, H. Seibt, and E. Schard, Angew. Chem. Internat. Edn., 1965, 4, 327
 ⁴ C. U. Pittman, Jr. and L. S. Smith, J. Amer. Chem. Soc., 1975, 97, in press; L. S. Smith, MS Thesis, University of Alabama, 1974.
 ⁵ C. U. Pittman, Jr., R. M. Hanes, and L. S. Smith, J. Amer. Chem. Soc., 1975, 97, in press.
 ⁶ B. R. James and N. A. Nemon, Canad. J. Chem., 1967, 46, 217; J. R. Shapley, R. R. Shrock, and D. A. Osborn, J. Amer. Chem. Soc., 1969, 91, 2816.
 - J. E. Lyons, J. Catalysis, 1973, 30, 490.

 - ⁹ H. A. Tayim and J. C. Bailar, J. Amer. Chem. Soc., 1967, 89, 4330.
 ⁹ F. Basolo and R. G. Pearson, 'Mechanisms of Inorganic Reactions,' 2nd Edn., Wiley, New York, 1968, p. 361.