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Enantioselective Synthesis of Octalactin A
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An efficient enantioselective synthesis of the C1-C9 fragment
2 of octalactin A (1) has been achieved starting from (-)-citronellol
3).

Octalactin A (1) was isolated from a marine bacterium
Streptomyces sp. together with the related compound octalactin
B.' The novel structure containing seven chiral centers and an
unusual eight-membered-ring lactone has been determined by
X-ray crystallographic analysis and the absolute stereochemistry
has been established by synthesis.? In addition to the characteristic
structural feature, 1 exhibits a potent cytotoxic activity against
some tumor cell lines.! Because of its attractive structure and
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potent biological activity, two groups have achieved its total
synthesis. As the extension of our natural product synthesis
using baker’s yeast reduction,®we would like to report a formal
total synthesis of 1 starting from (-)-citronellol (3).

We chose a protected tetraol 2 as the target molecule, since
2 has been converted into octalactin A by Buszek et al.* (-)-
Citronellol (3) was an ideal starting material because it has a
carbon chain less one carbon than 2 and methyl group with
desired configuration. Other chiral centers in 2 would be adjusted
by baker’s yeast reduction (C7), asymmetric dihydroxylation
(C3), and stereoselective hydroboration (C8).

Synthesis was started with (R)-diol 4 which has already been
synthesized in high enantiomeric purity from 3 by yeast
reduction.” Diol 4 was first converted into benzyl ether 5 in
three steps. According to the procedure developed by us,’ 5 was
treated with n-butyllithium (n-BuLi) at -78-0 °C to give the
terminal olefin 6 in 83% yield.

Dihydroxylation of 6 with AD-mix-o¢ yielded a diastereo-
meric mixture of diol (anti:syn 9:1 ratio), which was separated
after converting to the Mosher’s ester 7. Protection of the
secondary alcohol of 7 as MPM-ether and removal of the MTPA
ester afforded primary alcohol 8. Conversion of 8 to the bromide
followed by reaction with 2-lithio-1,3-dithiane afforded 9 in
65% yield. Hydrolysis of acetonide group in 9 yielded (R)-diol,
which was converted to (S)-epoxide 10 through mesylate. Lewis
acid-catalyzed epoxide opening reaction yielded an allyl alcohol
11, which was subjected to the hydroboration with thexyl borane
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a: 1) 2,2-dimethoxypropane, PPTS, CH,Cl,, 2) K,CO3, MeOH, 3) BnBr, NaH, Bu,NI,THF, 73%; b: n-BuLi, THF, -78~0 °C
83%; c: 1) AD-mix-a, H,0, -BuOH, 0 °C 2) (R)-MTPA, DCC, 4-DMAP, CH,Cly, 91%; d: 1) MPM-trichloro-acetimidate,
CF3S03H, THF, 2) 2 mol dm™! NaOH, E(OH, 71%; e: 1) CBry, PhsP, CH,Cl,, 2) 1,3-dithiane, n-BuLi, THF, -30 °C, 65%:
f: 1) PPTS, MeOH, 2) MsCl, 4-DMAP, pyridine, 3) K,CO3, MeOH, 62%; g: 1) (i-PrO);Al, toluene, 120 °C, 2) PivCl, E3N,
4-DMAP, CH,Cl,, 79%; h: 1) 9-BBN, THF, -78~50 °C, 2) H,0,, 2 mol dm™! NaOH, 3) LiAlH,, THF, 36%; i: 1) TBDPSCI,
EN, 4-DMAP, CH,Cly, 2) Ac,0, E3N, 4-DMAP, CH,Cl,, 3) Mel, CH;CN, 4) NaBH,, MeOH, 30%.
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to yield 1,3-diol 13 in 79% yield, though, the selectivity was
only 3:1. The selectivity was improved to 9:1 when the O-pivaloyl
derivative 12 was treated with 9-BBN.***7 Protection of 1,3-diol
part in 13, hydrolysis of dithiane group and reduction of the
resulting aldehyde gave the target primary alcohol 2. The
spectroscopic properties of 2 including its optical rotation were
identical with those of 2 synthesized by Buszek’s group.>*®

In conclusion, we achieved a formal synthesis of octalactin
A, using diol 4 as a versatile chiral synthon.
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The stereochemistry at C8 of the major product was
determined unambiguously to be R using 600 MHz 'H-NMR
after transformed it into the corresponding acetonide.

[l 429.6° (¢ 0.05, CHCL,) (authentic: +31.5° (¢ 1.35,
CHCL); IR v max (neat) cm™ 3429, 2928, 2856, 1736;
'H-NMR(200 MHz, CDCL) &: 7.68-7.63(4H, m), 7.41-
7.23(8H, m), 6.89-6.84(2H, m), 5.14-4.88(1H, m), 4.53(1H,
d, J=10.5 Hz), 4.35(1H, d, J=10.5 Hz), 3.79(3H, s). 3.70-
3.48(5H, m), 1.95-1.05(8H, m), 1.95(3H, m), 1.05(9H, s),
0.95(3H, d, /=6.8 Hz), 0.88(3H, d, /=6.8 Hz); HR-FABMS
Calcd. for Cy;H,0O,SiNa: 643.3431, Found 643.3438.



