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The enantiomerically pure cis-1,2-diol 2, which is obtained
by microbial oxidation of toluene, has been converted,
via a sequence of reactions including high-pressure pro-
moted Diels–Alder cycloaddition and oxa-di-π-methane
rearrangement steps, into the triquinane (�)-hirsutene (1).

The linear triquinane 1 (�)-hirsutene (ent-1), a sesquiterpene
isolated from the fermented micellium of Coriolus consors,2 is
the biogenetic precursor of more highly oxygenated and bio-
logically active congeners such as hirsutic acid (hirsutic acid
C),3 complicatic acid,3 coriolin,4 and hypnophilin.5 Whilst
biologically inactive itself, hirsutene has been a popular syn-
thetic target used to “showcase” the development of a sur-
prisingly wide variety of ingenious synthetic methodologies
and strategies.1,6 The vast majority of such work has, however,
produced the racemic modification of the natural product.
Indeed, only Hua 6a has achieved a total synthesis of (�)-
hirsutene while Greene,6b Node 6c and Leonard 6e have each
claimed formal total syntheses of the same target. It is within
this context that we now wish to report a chemoenzymatic total
synthesis of (�)-hirsutene (1) from the enantiomerically pure
cis-1,2-dihydrocatechol 2, a compound obtained in large
quantity via microbial dihydroxylation of toluene.7 This work
should serve to emphasize the utility of compound 2 as a
starting material in the synthesis of terpenoids 8 as well as the
high facial selectivities attainable in the reaction of this diene
with Diels–Alder dienophiles. Furthermore, since compound
ent-2 is available,9 the present work also constitutes a formal
total synthesis of (�)-hirsutene, the naturally occurring form of
this sesquiterpene. 

The reaction sequence leading to target 1 is shown in
Scheme 1 and starts with the high pressure (19 kbar) promoted
Diels–Alder reaction between compound 2 and cyclopentenone
(3). In keeping with a previous report,10 preferential “syn-
addition” 11 of the dienophile to the diene is observed and the
structure of major adduct, 4† {70% from 2, mp 93–94 �C,
[α]D �196 (c 1.04)‡}, was established by single-crystal X-ray
analysis. § Protection of diol 4 as the corresponding acetonide,
5 {98%, [α]D �122 (c 0.6)}, was achieved under standard
conditions and the latter compound could be regioselectively
dimethylated, thereby affording compound 6 {100%, mp 70–72
�C, [α]D �47 (c 0.6)}. The now redundant carbonyl group
associated with this last compound was deleted by a three step
sequence involving initial lithium aluminium hydride-mediated
reduction to a ca. 12.5 : 1 mixture of alcohols 7 {major epimer:
88%, mp 88–89 �C, [α]D �18 (c 0.4); minor epimer: 7%,
mp 57–59 �C, [α]D �75 (c 0.2)}. These were converted into the
corresponding xanthates which were immediately subjected
to Barton–McCombie deoxygenation 12 using tri-n-butyltin
hydride. Deprotection of the resulting acetonide 8 {71–82%

from 7, mp 65–66 �C, [α]D �39 (c 0.4)} afforded diol 9 {95% (at
44% conversion), mp 91–92 �C, [α]D �56 (c 0.4)} which could be
selectively oxidized at that hydroxy group remote from the
bridgehead methyl by the sterically demanding oxammonium
salt derived from 4-acetamido-TEMPO.13 The resulting acyloin
10 {87%, [α]D �34 (c 0.4)} was then protected 14 as the corre-
sponding MEM-ether 11 {91%, [α]D �28 (c 0.4)}. Exploiting
a strategy for linear triquinane synthesis first enunciated by
Demuth 1c and later employed by others,6f a solution of com-
pound 11 in acetone and containing acetophenone (as triplet
sensitizer) was subject to irradiation with a high pressure
mercury vapour lamp. Under these conditions the expected
oxa-di-π-methane rearrangement product 12 {80% (at 71%
conversion), mp 78–79 �C, [α]D �102 (c 0.2)} was obtained
and its structure confirmed by single-crystal X-ray analysis ¶

(Fig. 1). A number of reagents are available for effecting reduc-
tive cleavage of the “carbonyl-conjugated” cyclopropanes 15 but
the most useful means for achieving this within photo-products
such as 12 is tri-n-butyltin hydride.16 By such means the tri-
quinane 13 {88% (at 81% conversion), [α]D �20 (c 0.4)} was
obtained and removal of the now superfluous carbonyl group
within this compound carried out by the same means as
used earlier, viz. sodium borohydride reduction/xanthate ester
formation/Barton–McCombie deoxygenation. The ensuing
MEM-ether 14 {83% from 13, [α]D �32 (c 0.6)} was subject to
deprotection under conditions defined by Monti 17 and the
resulting alcohol 15 {76%, mp 44–46 �C, [α]D �36 (c 0.1)},
previously obtained 1d,e in racemic form during syntheses of
(±)-hirsutene, was oxidized with PCC to the corresponding and
volatile ketone 16 {71%, mp 23–24 �C, [α]D �56 (c 0.4); lit.6a [α]D

(for ent-16) �81 (c 0.2, hexane)}. Finally, Wittig olefination of
compound 16 afforded target 1 {100% at 32% conversion, [α]D

�26 (c 0.2, CDCl3); lit.
6a [α]D (for ent-1) �48 (c 0.35, pentane)},

the 1H and 13C NMR spectral data for which were in complete
accord with the assigned structure.

Fig. 1 Anisotropic displacement ellipsoid plot 18 (with 50% probability
ellipsoids) of compound 12 derived from X-ray crystallographic data.
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Scheme 1 Reagents and conditions: (i) 19 kbar, CH2Cl2, 18 �C, 24 h; (ii) 2,2-DMP, p-TsOH�H2O (cat.), 18 �C, 16 h; (iii) MeI (4.2 mol equiv.),
LiHMDS (3.15 mol equiv.), THF, 0–18 �C, ca. 4 h; (iv) LiAlH4 (1.1 mol equiv.), THF, 0–50 �C, 29 h; (v) (a) NaH (5 mol equiv.), CS2 (10 mol equiv.),
THF, 0–66 �C, 18 h then MeI (20 mol equiv.), 18–66 �C, 56 h; (b) n-Bu3SnH (5 mol equiv.), AIBN (cat.), toluene, 111 �C, 18 h; (vi) 3 : 2 v/v AcOH–
H2O, 60 �C, 96 h; (vii) 4-AcNHTEMPO (2.1 mol equiv.), p-TsOH�H2O (2.1 mol equiv.), CH2Cl2, 0–18 �C, 16 h; (viii) MEM-Cl (2 mol equiv.), Hünig’s
base (2.5 mol equiv.), CH2Cl2, 18 �C, 16 h; (ix) see Experimental; (x) n-Bu3SnH (6 mol equiv.), AIBN (cat.), C6H6, 80 �C, 8 h; (xi) NaBH4 (2.25 mol
equiv.), MeOH, 18 �C, 4 h; (xii) (a) NaH (5 mol equiv.), CS2 (10 mol equiv.), THF, 0–66 �C, 18 h then MeI (16 mol equiv.), 18–66 �C, 9 h; (b) n-Bu3SnH
(2 mol equiv.), AIBN (cat.), toluene, 111 �C, 2 h; (xiii) PPTS (2.6 mol equiv.), t-BuOH, 82 �C, 8 h; (xiv) PCC (2 mol equiv.), CH2Cl2, 18 �C, 16 h;
(xv) Ph3P��CH2 (2 mol equiv.), toluene, 0–66 �C, 1.5 h. 2,2-DMP = 2,2-dimethoxypropane.

Experimental

Compound 12

A deoxygenated solution of compound 11 (254 mg, 0.82 mmol)
and acetophenone (240 µL, 2.06 mmol) in acetone (120 mL)
contained in a Pyrex vessel jacketed by a water-cooled solu-
tion of sodium bromide (750 g) and lead() nitrate (8 g) in
water (1 L) was subjected to irradiation from a Phillips 125 W
HPL-N lamp for 32 h whilst being maintained under a nitrogen
atmosphere. The reaction mixture was then concentrated
under reduced pressure and the resulting clear, colourless
oil subjected to flash chromatography (silica, 0–30% v/v ethyl
acetate–hexane gradient elution) thereby yielding two major
fractions, A and B.

Concentration of fraction A (Rf 0.4 in 30% v/v ethyl acetate–
hexane) afforded starting material 11 (73 mg, 29% recovery) as
a clear, colourless oil (Found: M��, 308.1986; C, 69.80; H, 8.75.
C18H28O4 requires M��, 308.1988; C, 70.10; H, 9.15%). νmax

(NaCl) 3040, 2952, 2931, 2898, 2874, 1736, 1456, 1129, 1111,
1051, 1036, 987, 708 cm�1; δH (300 MHz, CDCl3) 6.10 (1H, dd,
J 8.4 and 6.0), 6.02 (1H, broad d, J 8.4), 5.11 (1H, d, J 6.9), 4.80
(1H, d, J 6.9), 3.82 (2H, m), 3.58 (2H, m), 3.46 (1H, s), 3.39
(3H, s), 2.99 (1H, broad d, J 6.0), 2.65 (2H, m), 1.49 (2H, m),
1.21 (3H, s), 1.16–0.96 (2H, m), 0.99 (3H, s), 0.91 (3H, s); δC (75
MHz, CDCl3) 210.0, 140.1, 128.4, 96.4, 76.9, 72.0, 67.7, 59.4,
52.5, 45.5, 44.9, 44.2, 43.4, 42.1, 39.6, 28.8, 27.9, 19.6; m/z (EI)
308 (M��, 2%), 279 (3), 176 (17), 175 (37), 108 (40), 105 (21),
89 (100), 59 (74).

Concentration of fraction B (Rf 0.2 in 30% v/v ethyl acetate–
hexane) afforded triquinane 12 {145 mg, 80% (at 71% con-
version)} as a white crystalline solid (Found: M��, 308.1988;
C, 70.05; H, 8.86. C18H28O4 requires M��, 308.1988; C, 70.10;

H, 9.15%). νmax (NaCl) 2971, 2956, 2933, 2869, 1731, 1110,
1055, 1010 cm�1; δH (300 MHz, CDCl3) 4.99 (1H, d, J 6.9), 4.81
(1H, d, J 6.9), 3.89–3.73 (3H, complex m), 3.56 (2H, m), 3.39
(3H, s), 2.68 (1H, dt, J 12.0 and 7.0), 2.34 (1H, m), 2.10 (1H, t,
J 5.4), 1.91–1.77 (3H, complex m), 1.64 (1H, dd, J 10.3 and
5.6), 1.44 (1H, t, J 11.9), 1.36–1.20 (1H, complex m), 1.34 (3H,
s), 1.08 (3H, s), 0.86 (3H, s); δC (75 MHz, CDCl3) 210.8, 95.6,
88.1, 72.0, 67.5, 59.3, 53.3, 49.9, 48.8, 43.5, 43.3, 40.7, 36.0,
33.7, 32.0, 29.8, 27.7, 21.4; m/z (EI) 308 (M��, 2%), 279 (9), 219
(53), 108 (70), 89 (88), 59 (100).
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