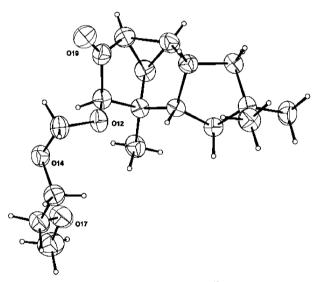
COMMUNICATIO

A chemoenzymatic synthesis of (-)-hirsutene from toluene

Martin G. Banwell,* Alison J. Edwards, Gwion J. Harfoot and Katrina A. Jolliffe

Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia. E-mail: mgb@rsc.anu.edu.au


Received (in Cambridge, UK) 12th September 2002, Accepted 18th October 2002 First published as an Advance Article on the web 28th October 2002

The enantiomerically pure *cis*-1,2-diol 2, which is obtained by microbial oxidation of toluene, has been converted, *via* a sequence of reactions including high-pressure promoted Diels-Alder cycloaddition and oxa-di- π -methane rearrangement steps, into the triquinane (-)-hirsutene (1).

The linear triquinane¹ (+)-hirsutene (*ent-1*), a sesquiterpene isolated from the fermented micellium of Coriolus consors,² is the biogenetic precursor of more highly oxygenated and biologically active congeners such as hirsutic acid (hirsutic acid C),³ complicatic acid,³ coriolin,⁴ and hypnophilin.⁵ Whilst biologically inactive itself, hirsutene has been a popular synthetic target used to "showcase" the development of a surprisingly wide variety of ingenious synthetic methodologies and strategies.^{1,6} The vast majority of such work has, however, produced the racemic modification of the natural product. Indeed, only Hua^{6a} has achieved a total synthesis of (+)-hirsutene while Greene,^{6b} Node^{6c} and Leonard^{6e} have each claimed formal total syntheses of the same target. It is within this context that we now wish to report a chemoenzymatic total synthesis of (-)-hirsutene (1) from the enantiomerically pure cis-1,2-dihydrocatechol 2, a compound obtained in large quantity via microbial dihydroxylation of toluene.7 This work should serve to emphasize the utility of compound 2 as a starting material in the synthesis of terpenoids⁸ as well as the high facial selectivities attainable in the reaction of this diene with Diels-Alder dienophiles. Furthermore, since compound ent-2 is available,9 the present work also constitutes a formal total synthesis of (+)-hirsutene, the naturally occurring form of this sesquiterpene.

The reaction sequence leading to target 1 is shown in Scheme 1 and starts with the high pressure (19 kbar) promoted Diels-Alder reaction between compound 2 and cyclopentenone (3). In keeping with a previous report,¹⁰ preferential "synaddition"11 of the dienophile to the diene is observed and the structure of major adduct, 4[†] {70% from 2, mp 93–94 °C, $[a]_{\rm D}$ -196 (c 1.04)[‡]}, was established by single-crystal X-ray analysis.§ Protection of diol 4 as the corresponding acetonide, 5 {98%, $[a]_{D}$ -122 (c 0.6)}, was achieved under standard conditions and the latter compound could be regioselectively dimethylated, thereby affording compound 6 {100%, mp 70-72 °C, $[a]_{D}$ -47 (c 0.6)}. The now redundant carbonyl group associated with this last compound was deleted by a three step sequence involving initial lithium aluminium hydride-mediated reduction to a ca. 12.5 : 1 mixture of alcohols 7 {major epimer: 88%, mp 88–89 °C, $[a]_{\rm D}$ +18 (c 0.4); minor epimer: 7%, mp 57–59 °C, $[a]_{\rm D}$ +75 (c 0.2)}. These were converted into the corresponding xanthates which were immediately subjected to Barton-McCombie deoxygenation¹² using tri-n-butyltin hydride. Deprotection of the resulting acetonide 8 {71-82% DOI: 10.1039/b208778b

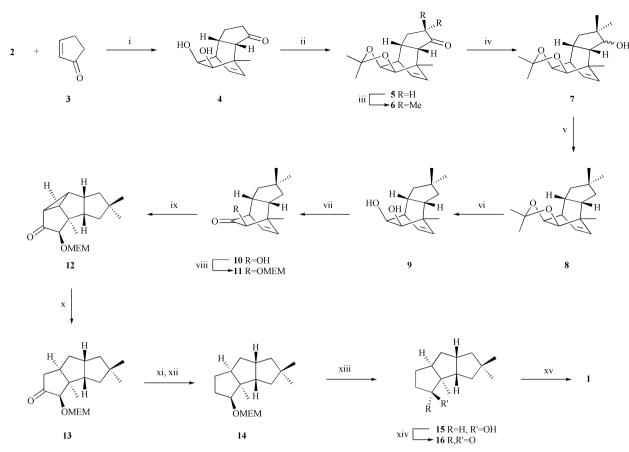

from 7, mp 65–66 °C, $[a]_{\rm D}$ +39 (*c* 0.4)} afforded diol 9 {95% (at 44% conversion), mp 91–92 °C, $[a]_{\rm D}$ +56 (*c* 0.4)} which could be selectively oxidized at that hydroxy group remote from the bridgehead methyl by the sterically demanding oxammonium salt derived from 4-acetamido-TEMPO.¹³ The resulting acyloin 10 {87%, $[a]_{\rm D}$ -34 (*c* 0.4)} was then protected ¹⁴ as the corresponding MEM-ether 11 {91%, $[a]_{\rm D}$ +28 (*c* 0.4)}. Exploiting a strategy for linear triquinane synthesis first enunciated by Demuth ^{1c} and later employed by others,^{6f} a solution of compound 11 in acetone and containing acetophenone (as triplet sensitizer) was subject to irradiation with a high pressure mercury vapour lamp. Under these conditions the expected oxa-di- π -methane rearrangement product 12 {80% (at 71% conversion), mp 78–79 °C, $[a]_{\rm D}$ +102 (*c* 0.2)} was obtained and its structure confirmed by single-crystal X-ray analysis¶

Fig. 1 Anisotropic displacement ellipsoid plot ¹⁸ (with 50% probability ellipsoids) of compound **12** derived from X-ray crystallographic data.

(Fig. 1). A number of reagents are available for effecting reductive cleavage of the "carbonyl-conjugated" cyclopropanes¹⁵ but the most useful means for achieving this within photo-products such as 12 is tri-*n*-butyltin hydride.¹⁶ By such means the triquinane 13 {88% (at 81% conversion), $[a]_{D}$ +20 (c 0.4)} was obtained and removal of the now superfluous carbonyl group within this compound carried out by the same means as used earlier, viz. sodium borohydride reduction/xanthate ester formation/Barton-McCombie deoxygenation. The ensuing MEM-ether 14 {83% from 13, $[a]_{D}$ +32 (c 0.6)} was subject to deprotection under conditions defined by Monti¹⁷ and the resulting alcohol **15** {76%, mp 44–46 °C, $[a]_{\rm D}$ +36 (*c* 0.1)}, previously obtained^{1*d*,*e*} in racemic form during syntheses of (±)-hirsutene, was oxidized with PCC to the corresponding and volatile ketone **16** {71%, mp 23–24 °C, $[a]_D - 56 (c \ 0.4)$; lit.^{6a} $[a]_D$ (for *ent*-**16**) +81 (*c* 0.2, hexane)}. Finally, Wittig olefination of compound 16 afforded target 1 {100% at 32% conversion, $[a]_{D}$ $-26 (c \ 0.2, \text{CDCl}_3); \text{ lit.}^{6a} [a]_{D} (\text{for ent-1}) + 48 (c \ 0.35, \text{ pentane})\},$ the ¹H and ¹³C NMR spectral data for which were in complete accord with the assigned structure.

J. Chem. Soc., Perkin Trans. 1, 2002, 2439–2441 2439

Scheme 1 Reagents and conditions: (i) 19 kbar, CH_2CI_2 , 18 °C, 24 h; (ii) 2,2-DMP, *p*-TsOH·H₂O (cat.), 18 °C, 16 h; (iii) MeI (4.2 mol equiv.), LiHMDS (3.15 mol equiv.), THF, 0–18 °C, *ca.* 4 h; (iv) LiAlH₄ (1.1 mol equiv.), THF, 0–50 °C, 29 h; (v) (a) NaH (5 mol equiv.), CS₂ (10 mol equiv.), THF, 0–66 °C, 18 h then MeI (20 mol equiv.), 18–66 °C, 56 h; (b) *n*-Bu₃SnH (5 mol equiv.), AIBN (cat.), toluene, 111 °C, 18 h; (vi) 3 : 2 v/v AcOH–H₂O, 60 °C, 96 h; (vii) 4-AcNHTEMPO (2.1 mol equiv.), *p*-TsOH·H₂O (2.1 mol equiv.), CH₂Cl₂, 0–18 °C, 16 h; (viii) MEM-Cl (2 mol equiv.), Hünig's base (2.5 mol equiv.), CH₂Cl₂, 18 °C, 16 h; (ix) see Experimental; (x) *n*-Bu₃SnH (6 mol equiv.), AIBN (cat.), C₆H₆, 80 °C, 8 h; (xi) NaBH₄ (2.25 mol equiv.), MeOH, 18 °C, 4 h; (xii) (a) NaH (5 mol equiv.), CS₂ (10 mol equiv.), THF, 0–66 °C, 18 h then MeI (16 mol equiv.), 18–66 °C, 9 h; (b) *n*-Bu₃SnH (2 mol equiv.), AIBN (cat.), toluene, 111 °C, 2 h; (xiii) PPTS (2.6 mol equiv.), *t*-BuOH, 82 °C, 8 h; (xiv) PCC (2 mol equiv.), CH₂Cl₂, 18 °C, 16 h; (xiv) PCC (2 mol equiv.), CH₂Cl₂, 18 °C, 16 h; (xiv) PCC (2 mol equiv.), CH₂Cl₂, 18 °C, 16 h; (xiv) Ph₃P=CH₂ (2 mol equiv.), toluene, 0–66 °C, 15 h. 2,2-DMP = 2,2-dimethoxypropane.

Experimental

Compound 12

A deoxygenated solution of compound 11 (254 mg, 0.82 mmol) and acetophenone (240 μ L, 2.06 mmol) in acetone (120 mL) contained in a PyrexTM vessel jacketed by a water-cooled solution of sodium bromide (750 g) and lead(II) nitrate (8 g) in water (1 L) was subjected to irradiation from a Phillips 125 W HPL-N lamp for 32 h whilst being maintained under a nitrogen atmosphere. The reaction mixture was then concentrated under reduced pressure and the resulting clear, colourless oil subjected to flash chromatography (silica, 0–30% v/v ethyl acetate–hexane gradient elution) thereby yielding two major fractions, A and B.

Concentration of fraction A ($R_f 0.4$ in 30% v/v ethyl acetate–hexane) afforded starting material **11** (73 mg, 29% recovery) as a clear, colourless oil (Found: M⁺⁺, 308.1986; C, 69.80; H, 8.75. C₁₈H₂₈O₄ requires M⁺⁺, 308.1988; C, 70.10; H, 9.15%). v_{max} (NaCl) 3040, 2952, 2931, 2898, 2874, 1736, 1456, 1129, 1111, 1051, 1036, 987, 708 cm⁻¹; δ_H (300 MHz, CDCl₃) 6.10 (1H, dd, *J* 8.4 and 6.0), 6.02 (1H, broad d, *J* 8.4), 5.11 (1H, d, *J* 6.9), 4.80 (1H, d, *J* 6.9), 3.82 (2H, m), 3.58 (2H, m), 3.46 (1H, s), 3.39 (3H, s), 2.99 (1H, broad d, *J* 6.0), 2.65 (2H, m), 1.49 (2H, m), 1.21 (3H, s), 1.16–0.96 (2H, m), 0.99 (3H, s), 0.91 (3H, s); δ_C (75 MHz, CDCl₃) 210.0, 140.1, 128.4, 96.4, 76.9, 72.0, 67.7, 59.4, 52.5, 45.5, 44.9, 44.2, 43.4, 42.1, 39.6, 28.8, 27.9, 19.6; *m*/*z* (EI) 308 (M⁺⁺, 2%), 279 (3), 176 (17), 175 (37), 108 (40), 105 (21), 89 (100), 59 (74).

Concentration of fraction B ($R_{\rm f}$ 0.2 in 30% v/v ethyl acetate– hexane) afforded triquinane **12** {145 mg, 80% (at 71% conversion)} as a white crystalline solid (Found: M⁺⁺, 308.1988; C, 70.05; H, 8.86. C₁₈H₂₈O₄ requires M⁺⁺, 308.1988; C, 70.10;

2440 J. Chem. Soc., Perkin Trans. 1, 2002, 2439–2441

H, 9.15%). $v_{\rm max}$ (NaCl) 2971, 2956, 2933, 2869, 1731, 1110, 1055, 1010 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 4.99 (1H, d, *J* 6.9), 4.81 (1H, d, *J* 6.9), 3.89–3.73 (3H, complex m), 3.56 (2H, m), 3.39 (3H, s), 2.68 (1H, dt, *J* 12.0 and 7.0), 2.34 (1H, m), 2.10 (1H, t, *J* 5.4), 1.91–1.77 (3H, complex m), 1.64 (1H, dd, *J* 10.3 and 5.6), 1.44 (1H, t, *J* 11.9), 1.36–1.20 (1H, complex m), 1.34 (3H, s), 1.08 (3H, s), 0.86 (3H, s); $\delta_{\rm C}$ (75 MHz, CDCl₃) 210.8, 95.6, 88.1, 72.0, 67.5, 59.3, 53.3, 49.9, 48.8, 43.5, 43.3, 40.7, 36.0, 33.7, 32.0, 29.8, 27.7, 21.4; *m/z* (EI) 308 (M⁺⁺, 2%), 279 (9), 219 (53), 108 (70), 89 (88), 59 (100).

Acknowledgements

Dr Gregg Whited and Professor Tomas Hudlicky are warmly thanked for providing generous quantities of the diol **2**. We thank the Institute of Advanced Studies (IAS) for financial support including the provision of an IAS post-Doctoral Fellowship to KAJ. GH is the grateful recipient of an ANU Graduate School PhD Scholarship. Drs Ken McRae and Scott Stewart are thanked for carrying out some preliminary experiments.

References

[†] All new and stable compounds had spectroscopic data [IR, NMR, mass spectrum] consistent with the assigned structure. Satisfactory combustion and/or high-resolution mass spectral analytical data were obtained for new compounds and/or suitable derivatives.

 \ddagger Unless otherwise stated, all optical rotations were determined in chloroform solution at 18–26 °C.

§ Details of this analysis will be presented elsewhere and as part of an extended study revealing that *syn*-addition of dienophiles to various *cis*-1,2-dihydrocatechols is the preferred reaction pathway at 19 kbar.

¶ Crystal data for **12**: C₁₈H₂₈O₄, M = 308.418, T = 200(1) K, orthorhombic, space group $P2_12_12_1$, Z = 4, a = 6.08980(10), b = 11.0181(2), c = 25.4436(5) Å, V = 1707.22(5) Å³, $D_x = 1.200$ Mg m⁻³, 1770 unique data ($2\Theta_{max} = 50.06^{\circ}$), 1268 with $I > 2\sigma(I)$; R = 0.0297, $R_w = 0.0334$, S = 1.0303.

Images were measured on a Nonius Kappa CCD diffractometer (MoKa, graphite monochromator, $\lambda = 0.71073$ Å) and data extracted using the DENZO package.¹⁹ Structure solution was by direct methods (SIR97)²⁰ and refinement was by full matrix least-squares on F using the *CRYSTALS* program package.²¹ Atomic coordinates, bond lengths and angles, and displacement parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC reference number 192411. See http://www.rsc.org/suppdata/p1/b2/b208778b/ for crystallographic files in .cif or other electronic format.).

- For reviews see (a) L. A. Paquette, *Top. Curr. Chem.*, 1979, **79**, 41;
 (b) B. M. Trost, *Chem. Soc. Rev.*, 1982, **11**, 141;
 (c) M. Demuth and K. Schaffner, *Angew. Chem., Int. Ed. Engl.*, 1982, **21**, 829;
 (d) G. Metha and A. Srikrishna, *Chem. Rev.*, 1997, **97**, 671;
 (e) V. Singh and B. Thomas, *Tetrahedron*, 1998, **54**, 3647.
- 2 (a) T. C. Feline, G. Mellows, R. B. Jones and L. Phillips, J. Chem. Soc., Chem. Commun., 1974, 63; (b) S. Nozoe, J. Furukawa, U. Sankawa and S. Shibata, Tetrahedron Lett., 1976, 195.
- 3 P. F. Schuda, J. L. Phillips and T. M. Morgan, *J. Org. Chem.*, 1986, **51**, 2742 and references cited therein.
- 4 G. Mehta and D. S. Reddy, J. Chem. Soc., Perkin Trans. 1, 2001, 1153 and references cited therein.
- 5 F. Geng, J. Liu and L. A. Paquette, Org. Lett., 2002, 4, 71 and references cited therein.
- 6 (a) D. H. Hua, S. Venkataraman, R. A. Ostrander, G.-Z. Sinai, P. J. McCann, M. J. Coulter and M. R. Xu, J. Org. Chem., 1988, 53, 507; (b) J. Castro, H. Sörensen, A. Riera, C. Morin, A. Moyano, N. A. Pericãs and A. E. Greene, J. Am. Chem. Soc., 1990, 112, 9388; (c) T. Inoue, K. Hosomi, M. Araki, K. Nishide and M. Node, Tetrahedron: Asymmetry, 1995, 6, 31; (d) T. Anger, O. Graalmann, H. Schroder, R. Gerke, U. Kaiser, L. Fitjer and M. Noltemeyer, Tetrahedron, 1998, 54, 10713; (e) J. Leonard, L. Bennett and A. Mahmood, Tetrahedron Lett., 1999, 40, 3965; (f) V. Singh, P. Vedantham and P. K. Sahu, Tetrahedron Lett., 2002, 43, 519. For discussions of syntheses of hirsutene reported prior to 1997–1998 see references 1(d) and 1(e).

- 8 (a) M. Banwell and M. McLeod, *Chem. Commun.*, 1998, 1851; (b)
 M. G. Banwell, P. Darmos, M. D. McLeod and D. C. R. Hockless, *Synlett*, 1998, 897.
- 9 D. R. Boyd, N. D. Sharma, S. A. Barr, H. Dalton, J. Chima, G. Whited and R. Seemayer, J. Am. Chem. Soc., 1994, 116, 1147.
- 10 J. R. Gillard and D. J. Burnell, J. Chem. Soc., Chem. Commun., 1989, 1439.
- (a) For useful discussions on factors controlling the facial selectivities observed in the Diels–Alder reactions of dissymmetric dienes see R. Uma and G. Mehta, *Acc. Chem. Res.*, 2000, 33, 278;
 (b) J. M. Coxon, R. D. J. Froese, B. Ganguly, A. P. Marchand and K. Morokuma, *Synlett*, 1999, 1681.
- 12 (a) D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1, 1975, 1574; (b) For reviews see W. Hartwig, Tetrahedron, 1983, 39, 2609 as well as D. Crichand L. Quintero, Chem. Rev., 1989, 89, 1413.
- 13 M. G. Banwell, V. S. Bridges, J. R. Dupuche, S. L. Richards and J. M. Walter, *J. Org. Chem.*, 1994, **59**, 6338.
- 14 E. J. Corey, J.-L. Gras and P. Ulrich, *Tetrahedron Lett.*, 1976, 809. MEM-protection was employed at this point in order to prevent decomposition of the product of the subsequent photo-isomerisation step.
- 15 R. A. Batey and W. B. Motherwell, *Tetrahedron Lett.*, 1991, 32, 6649 and references cited therein.
- 16 V. Singh and M. Porinchu, Tetrahedron, 1996, 52, 7087.
- 17 H. Monti, G. Léandri, M. Klos-Ringuet and C. Corriol, Synth. Commun., 1983, 13, 1021.
- 18 D. J. Watkin, C. K. Prout and L. J. Pearce, *CAMERON*, Chemical Crystallography Laboratory, Oxford, UK, 1996.
- 19 DENZO-SMN. Z. Otwinowski and W. Minor, Processing of X-ray diffraction data collected in oscillation mode, Methods in Enzymology, Volume 276: Macromolecular Crystallography, Part A, eds. C. W. Carter, Jr., and R. M. Sweets, Academic Press, 1997, pp. 307–326.
- 20 A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni and R. Spagna, J. Appl. Crystallogr., 1999, 32, 115.
- 21 D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge and R. I. Cooper, *CRYSTALS Issue 11*, Chemical Crystallography Laboratory, Oxford, UK, 2001.