A NEW SYNTHESIS OF MACROCYCLIC KETO-LACTONES VIA RING EXPANSION OF 2-(3-HYDROXYPROPYL)-2-NITROCYCLOALKANONES

Richard C. Cookson and Partha S. Ray

Department of Chemistry, The University, Southampton SO9 5NH.

Summary: 2-(3-Hydroxypropyl)-2-nitrocycloalkanones undergo base-catalysed isomerisation into nitro-lactones containing four more atoms in the ring, which can be smoothly converted to the corresponding keto-lactones.

Most syntheses of macrocyclic lactones involve lactonisation as the final step and, therefore, require high dilution and/or very slow mixing of reactants. We have been a interested in forming medium and many-membered lactones through ring expansion involving intermediates with the common ring sizes (3 to 7) and thus allowing the use of normal concentrations of reactants (Scheme 1).¹

E = electronegative group

Scheme 1

Since the isomerisation of 2-hydroxyalky1-2-phenylsulphonylcycloalkanones into phenylsulphonyl-lactones (Scheme 1, $E = SO_2Ph$) sometimes needed very basic conditions,¹ we have applied the reaction to ketones containing the more strongly electron-withdrawing nitro group (Scheme 1, $E = NO_2$). The nitro-lactones <u>4</u> from expansion of the ring of the cycloalkanones by three carbon atoms can then be converted into the keto-lactones <u>5</u> (Scheme 2).

Scheme 2

Reagents and Conditions: (i) catalytic amount of $(C_2H_5)_3N$ or $P(C_6H_5)_3$ or $(\underline{n}-C_4H_9)_4NF$, $(C_2H_5)_2O$, acrolein, RT, 2-4 h; (ii) NaCNBH₃, $\underline{t}-C_4H_9OH$, HCO_2H , RT, 0.5-1 h for 2a, 2b and 2c; NaBH₄, C_2H_5OH , O^OC , 15 min for 2d; (iii) catalytic amount of NaH, DME, reflux, 0.5-1 h; (iv) $(C_2H_5)_3N$ (3 equivs.), CH_3CN , aq. $(NH_4)_2$ [Ce(NO₃)₆] (3 equivs.), reflux, 2 days.

Table					
Per	centage	yields	of	isolated	products
	2	3		<u>4</u>	<u>5</u>
a)	86	84		92	78
b)	82	87		90	76
c)	88	89		95	81
d)	92	93		91	75

Cyclic α -nitroketones² are readily available either by nitration of the corresponding enol acetates with acetyl nitrate³ or from reaction of cycloalkenes with dinitrogen tetroxide and oxygen.⁴ Michael addition of 2-nitrocycloalkanones <u>la</u>-b to acrolein occurred in good yield (see Table) at room temperature in diethyl ether with a catalytic amount of either triphenylphosphine or tetrabutylammonium fluoride for la-c or triethylamine for ld.

Since selective reduction of the aldehyde group of the keto-aldehydes 2a-c with sodium borohydride in ethanol was unsatisfactory, it was carried out with sodium cyanoborohydride in a mixture of <u>t</u>-butanol and formic acid,⁵ which gave the keto-alcohols <u>3</u>a-c in good yield. Reduction of <u>2</u>d, however, proceeded smoothly with sodium borohydride in ethanol at 0°C for 15 min. Longer times led to mixtures of <u>3</u>d, the cyclic hemi-ketal <u>6</u>d, the nitro-ketone <u>4</u>d from ring-expansion and the hydroxy-acid from ring-opening. Although work-up of the reaction mixture with dilute acid gave, in addition, some of the keto-lactone <u>5</u>d, attempts to carry the process through to <u>5</u>d in one pot gave only low yields. Longer periods for reduction of <u>2</u>a-c with sodium cyanoborohydride resulted also in the isolation of some of the bicyclic isomers <u>6</u>a-c.

The keto-alcohols $\underline{3a}$ -d or hemi-ketals $\underline{6a}$ -d isomerised to the nitro-lactones $\underline{4a}$ -d in excellent yield (Table) in boiling 1,2-dimethoxyethane containing a catalytic amount of sodium hydride (0.1 equiv.).*

Most of the procedures for the Nef reaction,⁶ when applied to the nitro-lactones $\underline{4a}$ -d, gave low yields and some caused opening of the lactone ring. The required transformation to $\underline{5a}$ -d was finally achieved very satisfactorily with ceric ammonium nitrate and triethylamine.⁷

The conversion of the nitro-ketones <u>1</u> into the keto-lactones $\underline{5}^{\dagger}$ through the four steps shown in Scheme 2^{*}was carried out in over-all yields of 50-60%, even when each intermediate was separately purified. This general method of ring expansion is being extended by the use of different electronegative groups and different lengths of side chain with a view to its application in the synthesis of natural macrocyclic lactones.

*Recently an isolated example of this rearrangement has been reported without yield in the transformation of 8a-hydroxy-2-methyl-4a-nitro-1-oxadecahydronaphthalene into 9-methyl-6nitrononanolide by potassium hydride and 18-crown-6 (Von K. Kostova, A. Lorenzi-Riatsch, Y. Nakashita and M. Hesse, Helv. Chim. Acta, 65, 251 (1982). [†]Theketo-lactones 5 have been made before by oxidation of the dihydropyrans 7 to the diols with moist peractic acid followed by treatment with lead tetra-acetate or by direct oxidation with chromic or m-chloroperbenzoic acid. The ethers 7 were prepared by dehydration of the hydroxypropyl-ketones obtained either by alkylation of the pyrrolidine enamines with 1acetoxy-3-bromopropane and hydrolysis or by Michael addition of the enamines to methyl acrylate and reduction with lithium aluminium hydride. Alternative syntheses of ketolactones: 5a, I.J. Borowitz, G. Gonis, R. Kelsey, R. Rapp and G.J. Williams, J. Org. Chem., 31, 3032 (1966); 5b, I.J. Borowitz, G.J. Williams, L. Gross and R. Rapp, J. Org. Chem., 33, 2013 (1968); 5c, I.J. Borowitz, G.J. Williams, L. Gross, H. Beller, D. Kurland, N. Suciu, V. Bandurco and R.D.G. Rigby, J. Org. Chem., 37, 581 (1972); 5d, I.J. Borowitz, V. Bandurco, M. Heyman, R.D.G. Rigby and S. Ueng, J. Org. Chem., 38, 1234 (1973).

*The compounds listed in the Table were oily liquids but for the following which were crystalline: 2d, m.p. $89-90^{\circ}C$; 3a, $56-58^{\circ}C$; 3b, $59-60^{\circ}C$; 3d, $78^{\circ}C$; 5a, $68-69^{\circ}C$; 5c, $59-60^{\circ}C$; 5d, $31-32^{\circ}C$.

REFERENCES

- 1. V. Bhat and R.C. Cookson, J. Chem. Soc. Chem. Comm., 1123 (1981)
- 2. R. Fischer and H. Weitz, Synthesis, 261 (1980).
- A.A. Griswold and P.S. Starcher, <u>J. Org. Chem.</u>, <u>31</u>, 357 (1966); C. Bischoff and E. Schoder, <u>J. Prakt. Chem.</u>, <u>314</u>, <u>891 (1972)</u>; Japanese Pat. Appl. 10460 (1973), 36224 and 36225 (1974), <u>1033 (1975)</u> [Chem. Abs., <u>79</u>, 18211 (1973), <u>82</u>, 155555 and 155558 (1975)].
- D.R. Lachowicz and K.L. Kreuz, J. Org. Chem., 32, 3885 (1967); U.S. Pat. 3,466,326 [Chem. Abs., 71, 101323 (1969)]; German Pat., 1,964,964 [Chem. Abs., 73, 98486 (1970)]; U.K. Pat., 1,240,836 [Chem. Abs., 75, 118039 (1971)]; Dutch Pat., 8275 [Chem. Abs., 78, 4737 (1973)].
- 5. C.F. Lane, Synthesis, 135 (1975).
- D. Seebach, E.W. Colvin, F. Lehr and T. Weller, <u>Chimia</u>, <u>33</u>, 1 (1979); G. Apel and H. Schwarz in "Methoden der Organischen Chemie" (Houben-Weyl), Ed. E. Muller, Thieme, Stuttgart, 1971, Vol. X, Part 1, 458; W.E. Noland, Chem. Rev., 55, 137 (1955).
- 7. G.A. Olah and B.G. Gupta, Synthesis, 44, (1980).

(Received in UK 10 June 1982)