AN EFFICIENT SYNTHESIS OF (+)-8-PHENYLMENTHYL ISOCYANOACETATE.

A. Solladie-Cavallo^{*} and S. Quazzotti.

Laboratoire de Stéréochimie Organométallique associé au CNRS, EHICS, 1 rue B. Pascal, 67008 Strasbourg, France

(Received 15 October 1991)

Abstract: Optically pure (+)-8-phenylmenthyl isocyanoacetate 1 has been synthesized in 3 steps and 90% yield. The formamide 4 was obtained in 1 step by Pd/C-catalyzed hydrogenation of the corresponding azide in HCO₂Et as solvent.

Racemic amino-hydroxy acids such as serine and threonine have been prepared in three to four steps upon condensation of ethyl isocyanoacetate with the desired aldehydes^{1,2}. Recently amino-hydroxy acids with optical purities up to 95% have been obtained in the same way by using optically pure gold or silver complexes as catalysts^{3,4}. Condensation of ethyl isocyanoacetate with chiral complexed aromatic aldehydes lead to complete diastereoselectivity when LDA (-78°) or TBAF (-15°) were used as bases⁵. Furthermore double induction during condensation of ethyl isocyanoacetate with a chiral aldehyde in the presence of an optically pure gold complex as catalyst lead to a cyclosporine N-methylamino-hydroxy acid with 80% diastereoselectivity in the 2S, 3R, 4R-isomer⁶.

During work on the synthesis of optically active unusual amino-hydroxy acids^{7,8} we became interested in 8-phenylmenthyl isocyanoacetate 1 as a route to these chiral compounds. We thus want to report here an efficient synthesis of 8-phenylmenthyl isocyanoacetate 1.

As shown on the scheme, the (+)-8-phenylmenthyl isocyanoacetate 1 was synthesized from the (+)-phenylmenthyl chloroacetate 2 introduced by Ort^9 for the preparation of optically pure (-)-8-phenyl menthol.

Replacement of the chlorine by the azide group proceeded smoothly and quantitatively in DMSO at 20°C. Then the formamido ester 4 was obtained in quantitative yield and in one step by Pd/C-catalyzed hydrogenation of 3 in ethyl formate (HCO₂Et) as solvent¹⁰. According to Ugi's method¹¹, diphosgene was used for the last step and it was found that:

-the best ratios of reagents were: 2 equiv. of NEt_3 and 0.5 equiv. of diphosgene for 1 equiv. of the formamido ester 4.

-the crude product thus obtained, which contained 55% of 1 and 45% of starting material 4^{12} , had to be recycled in the same conditions.

Therefore (+)-8-phenylmenthyl isocyanoacatate 1 has thus been obtained in more than 90% yield, that is 2.6 times more than the 35% obtained in the synthesis proposed in 1978^{14} .

Experimental part.

¹H and ¹³C NMR have been recorded on an AC 200 Bruker (δ in ppm, J in Hz). Optical rotations were measured with a Perkin-Elmer polarimeter 241 MC. Infra-Red stectra were recorded on a Perkin-Elmer 257. Thin layer chromatographies were performed on Kieselgel 60 F_{254} plates purchassed from Merck. All the solvents were distilled before use. Anhydrous Et₂O was obtained by refluxing over LiAlH₄, anhydrous THF over sodium/benzophenone, anhydrous CH₂Cl₂ and DMSO over calcium hydride. NEt₃ was distilled over KOH.

(+)-8-phenylmenthyl chloroacetate (2). Was obtained in the usual way (cf ref. 9). Yield 58%; m.p. 83-84°C (lit. 82-83°C, ref. 9).

 $[\alpha]_D^{25} = +21 (c, 2.1; CCl_4) (lit. +22.4; c=2.29, CCl_4, ref. 9).$ ¹H NMR (CDCl₃/TMS) δ : 0.90 (3H, d, J=6.5, Me); 1.20 (3H, s, Me); 1.31 (3H, s, Me); 0.85-2.25 (17H); 3.18 (2H, AB system, $\triangle \sqrt{=67}$ Hz, J_{AB}=15, CH₂-Cl); 4.92 (1H, td, J_{aa}=10, J_{ae}=5, CH-O); 7.15 (1H, m, Harom.); 7.30 (4H, m, Harom.).

Displacement of the chlorine by an azide group. To (+)-8-phenylmenthyl chloroacatate 5g (16mmol, 1 equiv.) dissolved in DMSO (150ml) were added 1.52g (24mmol, 1.5 equiv.) of NaN₃. The mixture is stirred at 25°C for 16h. Then Et₂O (500ml) was added and the solution extracted with water (50mlx8). The organic phase was dried over MgSO₄ and the solvent evaporated under vacuum. The crude product (5.1g) was checked by ¹H NMR and used for the next step without purification.

(+)-8-phenylmenthyl azidoacetate (3). Uncoloured oil; yield 100%. $R_{f}=0.7$ (Et₂O/hexane, 2/8)

$$\begin{split} & [\alpha]_D{}^{21} = +17.6 \text{ (c, } 0.2; \text{ CCl}_4\text{)}. \\ & \text{IR (neat): } \sqrt[4]{N3}, 2110\text{ cm-1}; \sqrt[4]{CO}, 1735\text{ cm-1} \\ & \text{Anal. for } C_{18}\text{H}_{25}\text{N}_3\text{O}_2\text{: Cald. C, } 68.54\%; \text{ H, } 7.99\%; \text{ N, } 13.32\%. \text{ Found C, } 68.68\%; \text{ H, } \\ & 8.22\%; \text{ N, } 13.37\%. \\ & ^1\text{H NMR (CDCl_3/TMS)} 6:0.90 \text{ (3H, d, } J=6.5, \text{ Me}\text{); } 1.2 \text{ (3H, s, Me); } 1.33 \text{ (3H, s, Me); } 0.88\text{-} \\ \end{split}$$

2.14 (17H); 2.91 (2H, AB system, $\triangle 4 = 87$ Hz, $J_{AB} = 17$, CH₂-N₃); 4.94 (1H, td, $J_{aa} = 10.5, J_{ae} = 4.5,$ CH-O); 7.15 (1H, m, Harom.); 7.35 (4H, m, Harom.).

¹³C NMR (CDCl₃/TMS) δ: 22.2 (Me); 22.8 (Me); 26.6 (CH₂); 30.4 (Me); 31.7 (CH); 34.8 (CH₂); 39.8 (C); 42.1 (CH₂); 50.0 (CH₂-N₃); 50.5 (CH); 75.5 (CH-O); 125.5 (CH arom.para); 125.7 (2CH arom.); 128.5 (2CH arom.); 152.1 (C arom.); 167.8 (CO).

Hydrogenation-Formylation (one step). To the crude azidoacetate obtained above, 5.1g (16mmol), in HCO₂Et (100ml) was added Pd/C 10% (about 50mg) and the mixture was stirred at 25°C for 15h under 15bars of H₂. The catalyst was then filtered out and the solvent evaporated under vacuum. The crude compound was filtered over Silicagel (ϕ =2cm, h=15cm, Et₂O): 5.05g.

(+)-8-phenylmenthyl-formylamido acetate (4). Yield 100%

 $R_{f} = 0.35 (Et_{2}O)$

 $[\alpha]_{D}^{21} = +2.9(c, 3.8; CCl_4)$

IR (neat): \sqrt{NH} , 3330cm⁻¹; \sqrt{CO} ester, 1735cm⁻¹; \sqrt{CO} formyl, 1675cm⁻¹.

Anal. for C₁₉H₂₇NO₃: Calcd. C, 71.89%; H, 8.57%; N, 4.41%. Found C, 72.05%; H, 8.65%; N, 4.21%.

¹H NMR (CDCl₃/TMS) δ : 0.90 (3H, d, J=6.5, Me); 1.19 (3H, s, Me); 1.30 (3H, s, Me); 0.72-2.13 (17H); 3.34 (2H, AB part of an ABX, $\Delta = 54$ Hz, J_{AB}=18, J_{AX}=5, J_{BX}=5.5, CH₂-N); 4.89 (1H, td, J_{aa}=11, J_{ae}=4.5, CH-O); 6.25 (1H, broad t, X part of the ABX, NH); 7.20 (1H, m, Harom.); 7.30 (4H, m, Harom.); 8.01 (1H, s, CHO).

¹³C NMR (CDCl₃/TMS) δ: 22.1 (Me); 23.3 (Me); 26.5 (CH₂); 29.9 (Me); 31.5 (CH); 34.7 (CH₂); 39.7, 40.1 and 41.8 (2CH₂ and C); 50.4 (CH); 75.3 (CH-O); 125.5 (CHarom. para); 125.6 (2CH arom.); 128.3 (2CH arom.); 152.1 (Carom.); 165.1 (CO); 168.8 (CO).

Formation of the isocyano group. To 480mg (1.51mmol) of 8-phenylmenthyl isocyanoacetate in anhydrous CH_2Cl_2 (15ml) was added 0.45ml (3.16mmol, 2 equiv.) of anhydrous NEt_3 . The mixture was cooled to 0°C in an ice-bath and 0.096ml (0.8mmol, 1.1 equiv.) of trichloromethyl chloroformiate (diphosgene) dissolved in anhydrous CH_2Cl_2 (2ml) were added dropwise. After stirring at 25°C overnight, the mixture was washed with a 10% NaHCO₃ solution (5ml x 2) then with water untill pH=6-7. The organic phase was dried over MgSO₄ and the solvent evaporated under vacuum. The crude product, which is a mixture of the desired isocyano acetate 1 (55%) and of the starting material 4 (45%) as determined by ¹H NMR, was then recycled in the same conditions (with 2 equiv. of NEt₃ and 0.5 equiv. of diphosgene). After the same work-up the crude compound, a yellowish visquous liquid, 411mg (Y=95%) was obtained.

(+)-8-phenylmenthyl isocyanoacetate (1). Yield 95%.

 $R_{f} = 0.6 (Et_2O/hexane, 1/1).$

 $[\alpha]_{D}^{21} = +20.5 (c, 4.4; CCl_4).$ IR (neat): $\sqrt[4]{N=C}$, 2160cm⁻¹; $\sqrt[4]{CO}$, 1750cm⁻¹.
¹H NMR (CDCl₃/TMS) δ : 0.91 (3H, d, J=6.5, Me); 1.19 (3H, s, Me); 1.32 (3H, s, Me); 0.8-2.20 (17H); 3.18 (2H, AB system, $\Delta \sqrt{=110}$ Hz, J_{AB}=19, CH₂-NC); 4.93 (1H, td, J_{aa}=11, J_{ae}=4.5, CH-O); 7.15 (1H, m, Harom.); 7.30 (4H, m, Harom.).
¹³C NMR (CDCl₃/TMS) δ : 22.3 (Me); 26.6 (CH₂); 31.2 (2Me); 31.9 (CH); 34.9 (CH₂); 39.9 (C); 42.1 (CH₂); 43.4 (CH₂); 50.7 (CH); 76.7 (CH-O); 125.8 (CHarom. para); 125.9 (2CH

arom.); 128.7 (2CH arom.); 152.4 (Carom.); 161.2 (N=C); 125.8 (CHarom. para); 125.4 (Carom.); 161.2 (N=C); 163.8 (CO).

References and Notes.

- 1) Schöllkopf U., Hoppe D., Liebigs Ann. Chem., 1972, 763, 1.
- Matsumoto K., Urabe Y., Ozaki Y., Iwasaki T., Miyoshi M., Agr. Biol. Chem., 1975, 39, 1869.
- 3) a-Ito Y., Sawamura M., Hayashi T., J. Am. Chem. Soc., 1986, 108, 6405 and Tetrahedron Lett., 1987, 28, 6215.

b-Sawamura M., Hamashima H., Ito Y., J. Org. Chem., 1990, 55, 5935.

- 4) a-Pastor S.D., Togni A., J. Am. Chem. Soc., 1989, 111, 2333.
 b-Togni A., Pastor S.D., Tetrahedron Lett., 1989, 30, 1071.
- 5) a-Colonna S., Manfredi A., Solladié-Cavallo A., Quazzotti S., Tetrahedron Lett., 1990, 31, 6185.

b-Solladié-Cavallo A., Quazzotti S., Colonna S., Manfredi A., Tetrahedron Lett., 1989, 30, 2933.

- 6) Togni A., Pastor S.D., Rihs G., Helv. Chim. Acta, 1989, 72, 1471 and 1038.
- 7) Solladié-Cavallo A., Khiar N., Tetrahedron Lett., 1988, 29, 2189.
- 8) Solladié-Cavallo A., Khiar N., J. Org. Chem., 1990, 55, 4750.
- 9) Ort O., Organ. Synth., 1986, vol. 65, 203.
- 10) Reduction and formylation are usually performed in two steps and with about 85% total yield (J. Org. Chem., 1978, 43, 1972).
- 11) Ugi I., Skorna G., Angew. Chem. Int. Ed. Engl., 1977, 16, 259.
- 12) As determined by ¹H NMR (200MHz) on the signals of the O=C-C<u>H</u>₂-N groups (which lead to an ABX system in 4 and to an AB in 1), and of the C<u>H</u>O proton.
- 13) One must notice that further addition of excess of reagent (NEt₃/diphosgene) into the reaction-mixture without isolation of the product lead to degradation and very low yield in isocyanoacetate (<20%).
- 14) Langström B., Stridsberg B., Bergson G., Chemica Scripta, 1978, 13, 49.