filtered off and the solvent was evaporated. The mixture was distilled under reduced pressure to give a mixture of *trans*- and *cis*-**3b**,e.

 2β -Methyl-1-oxa-4-decalone^{29,31} (3b): yield 85%; bp 76-78 °C (0.5 mmHg); cis/trans ratio 45:55.

 2β -tert-Butyl-1-oxa-4-decalone²⁸ (3e): yield 83%; bp 82-84 °C (0.5 mmHg); cis/trans ratio 75:25. Anal. Calcd for C₁₃H₂₂O₂: C, 74.24; H, 10.54. Found: C, 74.23; H, 10.55. Pure epimers were obtained by GLC as described above.

Equilibration of 1-Oxa-4-decalones 3. A solution of cis and trans isomers 3 (10 mmol) in ethanol (15 mL) and triethylamine (1.46 g, 15 mmol) was refluxed for 48 h and concentrated in vacuo. The residue was distilled under reduced pressure and analyzed

by GLC. The trans/cis ratios were 9:1 for 3a-c,e and 65:35 for 3d.

Registry No. 1a, 29798-89-8; 1b, 13738-56-2; 1c, 29798-90-1; 1d, 91743-36-1; 2a, 51599-61-2; 2b, 91743-37-2; 2c, 91743-38-3; 2d, 91743-39-4; trans-3a, 51600-19-2; cis-3a, 51600-16-9; 3b, 55023-43-3; trans-3c, 91743-40-7; cis-3c, 91743-43-0; 3d, 91743-41-8; 3e, 91743-42-9; trans-4b, 91743-44-1; cis-4b, 91743-48-5; trans-4e, 91743-45-2; cis-4e, 91743-49-6; trans-5b, 91743-46-3; cis-5b, 91743-50-9; trans-5e, 91743-47-4; cis-5e, 91743-51-0; 4-tert-butyl-1-morpholino-1-cyclohexene, 16963-28-3; 3-methyl-2-butenoyl chloride, 3350-78-5; ethyl acetylacetate, 141-97-9; ethyl pivaloylacetate, 17094-34-7; 3,4,5,6-tetrahydrobenzoyl chloride, 36278-22-5.

Catalytic Conversion of Fluoroalkyl Alkyl Ethers to Carbonyl Compounds

David C. England

Central Research and Development Department,¹ E.I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898

Received March 19, 1984

Fluoroalkyl alkyl ethers are generally available by attack of alkoxide ion on fluoro olefins. In the presence of Lewis acid catalysts, such methyl and ethyl ethers have now been found to lose methyl or ethyl fluoride, respectively, to give fluorinated carbonyl compounds. The carbonyl compounds include acid fluoride, ketone, keto ester, vinyl ketone, acyl ketene, ketene, and acryloyl fluoride.

Fluorine atoms attached to carbon which also bears an alkyl ether group are known to be labile to electrophilic reagents. They are readily hydrolyzed in concentrated sulfuric acid, thus providing a route to some esters of fluoroacids.² The use of sulfur trioxide or fluorosulfonic acid gives acid fluorides, and chlorosulfonic acid gives acid chlorides.³

 $R_1COF + CH_3OSO_2F \xrightarrow{SO_3} R_1CF_2OCH_3 \xrightarrow{H_2O} R_1COOCH_3 + HF$

CISO3H FSO3H R1COCI + CH3OSO2F + HF R1COF + CH3OSO2F + HF

The use of sulfur trioxide has been especially valuable to prepare, from methyl ethers, acid fluorides which were desired in our research. However, sulfur trioxide (bp 42 °C) and the toxic byproduct, methyl fluorosulfate (bp 92 °C), are difficult to handle and must be separated from the desired acid fluoride product.

Results and Discussion

In an early experiment,⁴ 1 mol of 3-methoxyperfluoropropionyl fluoride⁵ was heated with 1.5 mol of titanium tetrafluoride in a sealed vessel at 175 °C to give a 77% yield of perfluoromalonyl fluoride (2) and methyl fluoride.

$$CH_{3}OCF_{2}CF_{2}COF \xrightarrow{TIF_{4}} CF_{2}(COF)_{2} + CH_{3}F$$

$$1 \qquad 2$$

It was subsequently shown that this reaction is catalytic and can be carried out exothermally at atmospheric pressure and at low temperatures in high yield on a number of related compounds.⁴ Antimony pentafluoride is one of many effective metal halide, Lewis acid type catalysts.⁴ Because the reaction is clean and gives only a gas, methyl fluoride (bp -80 °C), as byproduct, it provides an excellent replacement for the use of sulfur trioxide to prepare acid fluorides from methyl fluoro ethers.

The mechanism may involve abstracting fluorine from a C-F bond giving the acid fluoride, a metal fluoride anion, and a methyl cation. The latter two unite to give methyl fluoride and regenerate the catalyst. Alternately, a con-

$$R - C - CH_3 - R - C = 0 + CH_3 - R - C = 0 + CH_3F$$

certed, cyclic transition state may be involved.⁶ If a metal halide other than fluoride is used as catalyst, that methyl halide is evolved in initial stages of the reaction along with methyl fluoride.

The exothermic reaction is best controlled by regulating addition of the ether with stirring into a pot containing the neat catalyst. The product can often act as a moderating solvent; boiling lower than starting material, it can be fractionated from the mixture. Methyl fluoride is evolved as gas. Fresh catalyst can be added as required.

In addition to the preparation of acid fluorides by removal of CH_3F from the $-CF_2OCH_3$ group, ketones can be prepared from the $-CF(OCH_3)$ - group and ketenes and/or acryloyl fluorides from $FC(OCH_3)$ = $C(F \text{ or } CF_3)CF_3$ where

⁽¹⁾ Contribution no. 3388.

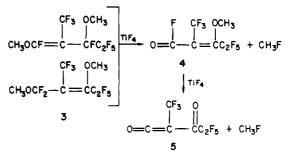
⁽²⁾ Young, J. A.; Tarrant, P. J. Am. Chem. Soc. 1979, 71, 2432.

⁽³⁾ England, D. C.; Solomon, L.; Krespan, C. G. J. Fluorine Chem.
1973/74, 3, 63.
(4) Anderson, D. G.; England, D. C.; Milian, A. S., Jr. U.S. Patent

⁽⁴⁾ Finderson, D. G., England, D. C., Winnan, A. S., Jr. U.S. Faterit (5) Forwardt F. S. Tullack C. W. Coffman, D. D. J. Am. Cham. Soc.

⁽⁵⁾ Fawcett, F. S.; Tullock, C. W.; Coffman, D. D. J. Am. Chem. Soc. 1962, 84, 4280.

⁽⁶⁾ The author is indebted to referees for this suggestion which avoids formation of a methyl cation. One has suggested that the use of a butyl ether would be informative, since the cation would be expected to rearrange to give sec-butyl fluoride.


Table I. Catalytic (SbF ₅) Elimination of Cl	Table I.	ion of CH ₃ F	Eliminatio	(SbF_s)	Catalytic	Table I.
--	----------	--------------------------	------------	-----------	-----------	----------

no.	starting material → product	SbF ₅ , g	weights, g	% yield				
1	^a HCF ₂ CF ₂ OCH ₃	1.8	32.5					
	$\rightarrow HCF_2COF$		12.3	88				
2	^b CF ₃ CHFCF ₂ OCH ₃	2.7	49.5					
	→ CF ₃ CHFCOF		33	82				
3	°(CF ₃) ₂ CHCF ₂ OCH ₃	2.2	77					
	\rightarrow (CF ₃) ₂ CHCOF		55	83				
4	$^{d}CHF(CF_{2}OCH_{3})_{2}$	2.5	15					
	$\rightarrow CHF(COF)_2$		8.2	84				
5	^e CF ₃ CF ₂ OCHFCF ₂ OCH ₃	3.3	40					
	\rightarrow CF ₃ CF ₂ OCHFCOF +		20.7	60				
	CF ₃ CF ₂ OCF ₂ H		8.1	27				
6	$f(CF_3)_2CHCF(OCH_3)C_2F_5$	1.0	38					
	\rightarrow (CF ₃) ₂ CHCOC ₂ F ₅		30	88				
7	^s CH ₃ OCF=CFCF ₃	2.8	20					
	\rightarrow CF ₂ =CFCOF		7.5	47				
8	$^{h}CH_{3}OCF = C(CF_{3})_{2}$	2.4	29					
	$\rightarrow O = C = C (CF_3)_2 +$		8.5	35				
	$FOCC(CF_3) = CF_2$		9.0	37				
9	$^{i}CH_{3}OCF = C(CF_{3})CF(OCH_{3})$ -							
	$CF(OCH_3)CF_3$	14.5	75					
	$\rightarrow CH_3OCF = C(CF3)$ -							
	COCOCF ₃		24.5	37				
10	$^{j}CH_{3}OCF = C(CF_{3})CF$ -							
	$(OCH_3)C_2F_5 +$							
	$CH_3OCF_2C(CF_3) = C(OC-$							
	$H_3)C_2F_5$	4.4	73					
	$\rightarrow O = C = C(CF_3)COC_2F_5$		43	67				
11	[*] H ₅ C ₂ OOCCF(CF ₈)OC ₂ H ₅	19.5	340.3					
	\rightarrow H ₅ C ₂ OOCCOCF ₃		220	83				
12	^m (CF ₃) ₂ CHCF ₂ OC ₂ H ₅	7.3	99.2					
	\rightarrow (CF ₃) ₂ CHCOF		61	77				

^aReacted below room temperature with rapid evolution of product (bp 0 °C) causing some codistillation with starting material (bp 33 °C). ^bReacted below room temperature; product bp 33 °C. ^dReacted below room temperature; product bp 33 °C. ^dReacted below room temperature; product bp 72 °C. ^eReaction vigorous at room temperature; product bp 52 °C and -12 °C (decarbonylation by SbF_b). ^fReacted below room temperature; product bp 60 °C. ^gReaction very exothermic and gave some high boiling residue. ^hReacted at room temperature; ketene product bp 5 °C; acryloyl product bp 52 °C. ⁱReacted at room temperature; distilled from 5.5 g of SbF_b to give the diketone; bp 91 °C (60 mm); n²⁵_D 1.3648; IR 5.40 and 5.95 μ m (C==O); ¹H NMR 4.05 ppm (q, J = 2.0 Hz, 3 H); ¹⁹F NMR -53.9 (q, J = 2.0 Hz, d, J = 2.4Hz, 3 F), -81.6 (d, J = 4.0 Hz, 3 F) and -133.9 ppm (q, J = 4.0 Hz, q, J = 2.0 Hz, 1 F). Anal. Calcfor C₇H₃F₇O₃: C, 31.36; H, 1.13; F, 49.61. Found: C, 31.58; H, 1.21; F, 50.76. ^jMixture of isomers. ^kEthyl fluoride was evolved; product bp 89 °C. ^mEthyl fluoride evolved.

a 1,3-fluoride shift is possible. Examples are given in Table I.

The reaction is particularly useful for the preparation of perfluoromethylpropionylketene (5) from the isomeric mixture of unsaturated ethers (3). In the previously reported⁷ method using sulfur trioxide, removal of the toxic byproduct, methyl fluorosulfate, is especially difficult because it codistills with the desired product. The preparation of perfluoromethylpropionylketene is now accomplished in one step with SbF_5 catalyst. When the less active TiF_4 catalyst is used, it is possible to carry out the reaction in two steps, isolating the intermediate acryloyl fluoride (4).

The scope of the reaction is not limited to methyl ethers. Catalytic removal of ethyl fluoride from two ethyl ethers was demonstrated (see Table I, run no. 11 and 12).

Experimental Section

Melting points and boiling points are uncorrected. ¹⁹F NMR spectra were obtained with a Varian XL-100 spectrometer operating at 94.1 MHz using CFCl₃ as internal standard. Upfield shifts are reported as negative values.

General Reaction Method. Reactions summarized in Table I were carried out by adding the catalyst to a dried still pot with magnetic stirrer, followed by addition of a small portion of the starting material from a dropping funnel through a side arm of the still pot. Most reactions were very exothermic, but heat was applied when necessary to start the reaction and to maintain distillation of product while more starting material was added. Some reactions started well below room temperature.

Conversion of 1,3-Dimethoxy-2-(trifluoromethyl)pentafluoropent-1- and -2-ene (3) to 3-Methoxyoctafluoro-2methyl-2-pentenoyl Fluoride (4) and Perfluoromethylpropionylketene⁷ (5). The isomeric mixture of methyl ethers 3 (34 g) was added to 2.3 g of TiF₄ in a 100-mL still pot, and the mixture was heated in a still as described above. Methyl fluoride was evolved, and 26.3 g (86.5%) of the acryloyl fluoride 4, bp 103 °C, was distilled. ¹⁹F NMR showed two isomers in the ratio of about 1:4: IR 5.36 μ m (COF), 5.99 μ m (C=C); ¹⁹F NMR: +55.95 and +52.80 (minor) (1 F), -59.40 and -54.97 (minor) (3 F), -114.8 and -114.9 ppm (minor) (2 F). Anal. Calcd for C₇H₃F₉O₆: C, 29.98; H, 1.04; F, 58.94. Found: C, 29.10; H, 1.31; F, 58.95.

Part of the above product (19.6 g) was recharged to the still pot with 2.5 g of TiF₄ and heated to distill 15.7 g (90.8%) of the acylketene 5, bp 79 °C.

Registry No. 3 (isomer 1), 84047-24-5; (*E*)-3 (isomer 2), 59754-88-0; (*Z*)-3 (isomer 2), 59736-18-4; (*E*)-4, 91686-80-5; (*Z*)-4, 91686-81-6; 5, 53352-88-8; HCF₂COF, 2925-22-6; CF₃CHFCOF, 6065-84-5; (CF₃)₂CHCOF, 382-22-9; CHF(COF)₂, 77946-94-2; CF₃CF₂OCHFCOF, 77946-91-9; CF₃CF₂OCF₂H, 53997-64-1; (CF₃)₂CHCOC₂F₅, 61637-91-0; CF₂—CFCOF, 667-49-2; O—C—C(CF₃)₂, 684-22-0; FOCC(CF₃)=CF₂, 684-36-6; CH₃OCF=C(C-F₃)CCOCOCF₃, 77946-93-1; H₅C₂OCCOCF₃, 13081-18-0; HCF₂-CF₂OCH₃, 425-88-7; CF₃CHFCF₂OCH₃, 382-34-3; (CF₃)₂CHC-F₂OCH₅, 84047-27-8; (CF₃)₂CHCF(OCH₃)₂, 758-62-3; CF₃CF₂OCHFC-F₂OCH₃, 84047-27-8; (CF₃)₂CHCF(OCH₃)₂, 560-53-2; CH₃-COCC=C(CF₃)CF(OCH₃)CF=C(CF₃)₂CHCF₂OCC+F(CF₃)CF(OCH₃)CF=C(CF₃)₂CHCF₂OCC-F(CF₃)CF(OCH₃)CF(OCH₃)CF=C(CF₃), 380-30-3; CH₃-7, 593-53-3; CH₃CH₂CHCF₂OC₃, 380-30-3; CH₃F, 593-53-3; CH₃CH₂C₃CH₂C₃CH₂C-S²OC₂C₃, 5973-61-51; H₅C₂OOCC-F(CF₃)OC₂H₅, 10186-66-0; (CF₃)₂CHCF₂OC₃, 380-30-3; CH₃F, 593-53-3; CH₃CH₂C₃C₃C₃C₃C₃C-S²C-2

⁽⁷⁾ England, D. C. J. Org. Chem. 1981, 46, 152.