Kinetics of the Reaction of CH_3S with O_3 at 298 K

G. S. Tyndall[†] and A. R. Ravishankara^{*}

National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80303, and the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309 (Received: March 13, 1989)

Laser-induced fluorescence was used to detect CH₃S radicals in the laser flash photolysis of CH₃SH-O₃-H₂O-He (SF₆) mixtures. Evidence was found for a reaction between CH₃S and O₃, with a rate coefficient (4.1 ± 2.0) × 10⁻¹² cm³ molecule⁻¹ s⁻¹. The yield of CH₃S from the reaction OH + CH₃SH was determined to be 1.1 ± 0.2 . Our results suggest that the CH₃S + O₃ reaction could be the major sink for CH₃S in the atmosphere.

Introduction

Following measurements of large amounts of dimethyl sulfide (DMS) and its oxidation products (SO₂ and CH₃SO₃H) in the marine troposphere,¹ there have been increased efforts to study the mechanism of atmospheric oxidation of DMS. Indirect studies using stable end product determinations inferred that the oxidation proceeds through the CH₃S radical,²⁻⁴ but no mechanism has been proposed which fully accounts for the transformations leading to final products. Rate coefficients for the reactions of CH₃S with NO₂, O₂, and NO have recently been measured where CH₃S was produced by pulsed laser photolysis and detected by pulsed laser induced fluorescence (LIF).⁵⁻⁷ We investigated the kinetics and mechanisms of the first two of these reactions and estimated the lifetime of CH₃S due to these reactions in the marine troposphere to be 5–6 s for reaction with NO₂ and >0.07 s for reaction with O₂.⁶

The reaction of CH₃S with O₃, the other major oxidant in the troposphere, had been discounted following a report that the reaction was relatively slow.⁷ In view of the reactivity of O₃ with other free radicals, particularly HS (which is analogous to CH₃S in reactivity toward NO₂ and O₂),⁸⁻¹⁰ and the relatively large abundance (tens of ppb; 1 ppb = a mole fraction of 10⁻⁹) of O₃ throughout the background troposphere, we decided to examine this reaction. We show here that the reaction between CH₃S and O₃ is in fact quite rapid and it could be the major sink for CH₃S in the atmosphere.

Experimental Section

The experimental apparatus used in the present study is described in our previous paper on CH_3S reactions with NO_2 and O₂.⁶ In the present experiments CH₃S radicals were produced by pulsed 248-nm laser photolysis of CH₃SH-H₂O-O₃ mixtures in He or SF_6 and detected by pulsed LIF. The detection system was identical with that described previously except that an excimer-pumped dye laser was used in place of a Nd:YAG pumped dye laser with frequency mixing. The excimer-pumped dye laser directly produces 371.4 nm needed to excite the CH₃S (\hat{A} - \hat{X}) transition. Other workers have found complications attributed to heterogeneous reactions between O_3 and organic sulfides,^{10,11} so our system was modified to reduce the occurrence of heterogeneous reactions. The CH₃SH in He was added down a movable inlet at the top of the cell while the other gases were flowed in from one of the side arms. The gases were pumped out through the second side arm. This arrangement reduced the contact time of the CH₃SH with the O₃ prior to the reaction zone where CH₃S is created and detected. After exiting the cell all the effluent gases passed through a 50-cm cell equipped with a low-pressure Hg lamp and a photodiode detector to check the bulk composition of the mixture via absorption at 254 nm. It was found that a slight decrease in O_3 absorbance occurred when CH_3SH was present, but this was shown to be due to chain reactions initiated by photolysis of the O_3 by the Hg lamp itself.

In our previous work on the reactions of CH₃S with NO₂ and O₂, CH₃S was produced by the laser photolysis of dimethyl disulfide (DMDS). However, it was found that a large loss of O₃ occurred in the presence of DMDS. Therefore, a new source of CH₃S was sought. Photolysis of O₃ at 248 nm was used to produce O(¹D) which reacted with H₂O. The OH in turn reacted with CH₃SH to give CH₃S. Use of He or SF₆ buffer gas allowed minimal quenching of O(¹D) to O(³P) before it reacted with H₂O. The H₂O also served to relax vibrationally excited OH which is formed from the reaction of O(¹D) with H₂O. The important reactions in this system are

 $O_3 + h\nu(\lambda = 248 \text{ nm}) \rightarrow O_2 + O(^1\text{D})$ $\rightarrow O_2 + O(^3\text{P})$ $O(^1\text{D}) + H_2\text{O} \rightarrow 2OH(\nu \le 2)$ $OH(\nu > 0) + H_2\text{O} \rightarrow OH(\nu = 0) + H_2\text{O}$ $OH + CH_3SH \rightarrow CH_3S + H_2\text{O}$

A minor source of CH_3S is the direct photolysis of CH_3SH at 248 nm:

$$CH_3SH + h\nu \rightarrow CH_3S + H$$

Other reactions that can take place in this system are

 $H + O_3 \rightarrow OH(v \le 9) + O_2$ $OH + O_3 \rightarrow HO_2 + O_2$ $H + CH_3SH \rightarrow products$ $O + CH_3SH \rightarrow products$

The products of the H + CH₃SH reaction are believed to be $CH_3S + H_2$ and $CH_3 + H_2S$.¹² The yield of CH_3S in the O + CH_3SH reaction is quite small.¹³ The complications that may

- (1) Andreae, M. O.; Berresheim, H.; Andreae, T. W.; Kritz, M. A.; Bates, T. S.; Merrill, J. T. J. Atmos. Chem. 1988, 6, 149.
- (2) Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. P. Int. J. Chem. Kinet. 1983, 15, 647.
 - (3) Hatakeyama, S.; Akimoto, H. J. Phys. Chem. 1983, 87, 2387.
 - (4) Grosjean, D. Environ. Sci. Technol. 1984, 18, 460.
- (5) Balla, R. J.; Nelson, H. H.; McDonald, J. R. Chem. Phys. 1986, 109, 101.
- (6) Tyndall, G. S.; Ravishankara, A. R. J. Phys. Chem. 1989, 93, 2426.
 (7) Black, G.; Jusinski, L. E. J. Chem. Soc., Faraday Trans. 2 1986, 82,
- (8) Friedl, R. R.; Brune, W. H.; Anderson, J. G. J. Phys. Chem. 1985, 89,
- 5505.
 (9) Schönle, G.; Rahman, M. M.; Schindler, R. N. Ber. Bunsen-Ges. Phys. Chem. 1987, 91, 66.
- (10) Wang, N. S.; Howard, C. J. To be submitted for publication in J. Phys. Chem.
 - (11) Black, G. J. Chem. Phys. 1984, 80, 1103.

[†]Present address: National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000.

^{*}Correspondence should be addressed to this author at the National Oceanic and Atmospheric Administration, ERL, R/E/AL2, 325 Broadway, Boulder, CO 80303.

⁽¹²⁾ Martin, D.; Jourdain, J. L.; LeBras, G. Int. J. Chem. Kinet. 1988, 20, 897, and references therein.

 ^{(13) (}a) Cvetanovic, R. J.; Singleton, D. L.; Irwin, R. S. J. Am. Chem. Soc.
 1981, 103, 3530. (b) Slagle, I. R.; Graham, R. E.; Gutman, D. Int. J. Chem.
 Kinet. 1976, 8, 451.

Figure 1. Temporal profile of $[CH_3S]$ in the presence of 7.9×10^{13} cm⁻³ of O₃, 6.4×10^{14} cm⁻³ of CH₃SH, 1.2×10^{16} cm⁻³ of H₂O, and 150 Torr of He at 298 K. The growth in $[CH_3S]$ is due to the OH + CH₃SH reaction. The maximum [CH₃S] corresponds to $\sim 2 \times 10^{11}$ cm⁻³. The nonexponential nature of CH₃S decay is evident from the signal not reaching zero at long reaction times.

arise from these reactions are that CH₃S is regenerated on the time scale of the experiment or that significant concentrations of O_3 are lost via chain reactions. However, by constraining the concentrations of H_2O , $(8-17) \times 10^{15}$ molecules cm⁻³, and CH₃SH, $(2-10) \times 10^{14}$ molecules cm⁻³, these complications were minimized.

The reaction between OH and CH₃SH has never been directly shown to give CH₃S as a product. It has been speculated that the reaction occurs by a complex addition mechanism.¹⁴ We could measure the yield of CH₃S in this reaction by using CH₃S produced from CH₃SH photolysis as an actinometer.

O₃ and CH₃SH were both used as dilute mixtures in He or, for a few experiments, in N_2 . The composition of the mixtures was frequently checked by diverting the mixture directly into the absorption cell. The absorption cross sections used at 254 nm were $1.16 \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1}$ for O₃¹⁵ and $2.1 \times 10^{-19} \text{ cm}^2$ molecule⁻¹ for CH₃SH (spectrum from ref 16 normalized to the absorption cross section value at 248 nm from ref 17).

Results

Photolysis of CH₃SH-O₃-H₂O-He (SF₆) mixtures produces CH₃S. A typical temporal profile of CH₃S LIF signal is shown in Figure 1. Such temporal profiles were measured with O₃ concentrations in the range $(1-12.5) \times 10^{13}$ molecules cm⁻³. At the lowest O₃ concentrations [CH₃S] appeared to decay by first-order kinetics, but as the O3 concentration increased, regeneration of CH₃S was observed. By tuning the excitation laser off the CH₃S absorption, it was ascertained that only CH₃S was being detected even in the time regime where the temporal profiles were nonexponential. Therefore, the nonexponential temporal profiles are due only to CH₃S regeneration. A nonlinear leastsquares program was used to fit the decays to a biexponential function

$$[CH_3S] = A \exp(-k_f t) + B \exp(-k_s t)$$
(I)

where $k_{\rm f}$ represents the initial (fast) decay of CH₃S and $k_{\rm s}$ the long-time (slow) decay. A plot of k_f vs $[O_3]$ was linear, and it is proposed that this primarily represents the removal of CH₃S by reaction with O_3 . The slow decay constant, k_s , showed no systematic dependence on [O₃], and probably represents diffusion out of the detection zone in our system.

The general kinetic behavior we observed in this system is typical of a mechanism where the product C of reaction A + Breacts with reactant A to generate B, the species whose temporal profile is being monitored. In this case the following mechanism would explain the observations that were made:

$$CH_3S + O_3 \rightarrow CH_3SO + O_2; \quad k_a$$
 (a)

$$CH_3SO + O_3 \rightarrow CH_3S; k_b$$
 (b)

$$CH_3S \rightarrow loss; k_c$$
 (c)

$$CH_3SO \rightarrow loss; k_d$$
 (d)

Note that reaction b may not be an elementary reaction but is the rate-limiting step in the regeneration of CH₃S in our system and that reactions c and d include reactions of CH₃S and CH₃SO with O₃ that do not produce CH₃SO and CH₃S, respectively. This reaction mechanism can be solved to obtain the following equation for the temporal profile of CH₃S:

 $[CH_3S] =$

$$[CH_{3}S]_{0}(C_{1} - C_{2})^{-1}\{(d + C_{1}) \exp(C_{1}t) - (d + C_{2}) \exp(C_{2}t)\}$$
(II)

where

$$C_{1} = 0.5\{(a^{2} - 4b)^{0.5} - a\}$$

$$C_{2} = -0.5\{(a^{2} - 4b)^{0.5} + a\}$$

$$d = k_{b}[O_{3}] + k_{d}$$

$$a = k_{a}[O_{3}] + k_{b}[O_{3}] + k_{c} + k_{d}$$

$$b = k_{a}k_{d}[O_{2}] + k_{b}k_{c}[O_{3}] + k_{c}k_{d}$$

Unfortunately, we cannot easily use this equation to obtain k_a , $k_{\rm b}$, $k_{\rm c}$, and $k_{\rm d}$ since (i) temporal profiles of required quality to fit such an expression were unobtainable, (ii) k_a and k_b are not substantially different from one another, (iii) the initial CH₃S generation step must be included, and (iv) the experimental parameters could not be varied over wide enough ranges to make these fits meaningful. However, we could simplify expression II because of the following observations: when CH₃S profiles were measured in the presence of $\sim 3 \times 10^{14}$ cm⁻³ of O₃, CH₃S concentrations rapidly reached values ~ 0.2 times the initial values after which time they decayed with a pseudo-first-order rate coefficient of $\sim 50 \text{ s}^{-1}$. The loss rate of CH₃S in the absence of O_3 was also ~ 50 s⁻¹. The simplifications that can be made from the above observations are (i) $k_c \approx k_d$ and (ii) there is very little loss of CH₃S and CH₃SO due to reactions with O₃ that do not produce CH₃SO and CH₃S, respectively. Under these conditions, it can be shown that eq II reduces to eq I, which was used to fit the data, where

and

 $k_{\rm s} \approx k_{\rm c}$

 $k_{\rm f} = k_{\rm a}[O_3] + k_{\rm b}[O_3] + k_{\rm c} \text{ (or } k_{\rm d})$

The first-order loss rate for CH₃S was estimated from experiments conducted in the absence of O_3 . Since the quality of the fits to eq I was strongly influenced by the number of data points in the temporal profile taken at longer time, k_c was usually fixed at the value found in the absence of O_3 or at the values derived from fits to experiments with high O_3 . The value of k_c chosen ranged from 50 to 65 s⁻¹. Less than 10% variation in the fitted value k_f was found when k_c was changed to either 45 or 75 s⁻¹, the extreme values likely for this rate coefficient.

According to the above analysis, a plot of k_{f} against [O₃] should be linear, with a slope of $(k_a + k_b)$ and an intercept of k_c . A plot of $k_f - k_c$ (= $k_a' + k_b' = k_a[O_3] + k_b[O_3]$) is shown in Figure 2. The estimated errors on individual points are $\pm (10-15)\%$, due to the uncertainties generated in fitting a biexponential form to the data where two reaction rate coefficients are of similar magnitude. Nevertheless, the expected dependence on O₃ concentration is found. A linear unweighted regression line through the data points gives

 $(k_{\rm a} + k_{\rm b}) = (5.1 \pm 0.6) \times 10^{-12} \,{\rm cm}^3 \,{\rm molecule}^{-1} \,{\rm s}^{-1}$

where the error bar is 2σ and refers to precision only.

⁽¹⁴⁾ Hynes, A. J.; Wine, P. H. J. Phys. Chem. 1987, 91, 3672.
(15) Molina, L. T.; Molina, M. J. J. Geophys. Res. 1986, 91, 14501.
(16) Calvert, J. G.; Pitts, J. N., Jr. Photochemistry; Wiley: New York, 1966.

⁽¹⁷⁾ Wine, P. H.; Nicovich, J. M.; Hynes, A. J.; Wells, J. R. J. Phys. Chem. 1986, 90, 4033.

Figure 2. Plot of $k_f - k_c$ (= $k_a' + k_b' = k_a[O_3] + k_b[O_3]$), the first-order loss rate of CH₃S to the stationary state, as a function of [O₃]. Symbols: **a**, 50 Torr of He; **b**, 100 Torr of He; **c**, 150 Torr of He; **e**, 200 Torr of He; **e**, 70 Torr of SF₆; \diamond , 100 Torr of SF₆.

An estimate of the relative magnitudes of k_a and k_b can be obtained from the magnitudes of A and B in eq I. The initial CH₃S concentration is proportional to (A + B) whereas B represents the "stationary-state" concentration of CH₃S extrapolated back to the photolysis laser pulse. Thus

$$\frac{[CH_3SO]_e}{[CH_3S]_e} = \frac{k_a}{k_b} = \frac{A}{B}$$
(III)

or

$$\frac{k_{a}}{k_{a}+k_{b}} = \frac{A}{A+B}$$
(IV)

where $[CH_3SO]_e$ and $[CH_3S]_e$ represent the concentrations in the "stationary state". The expression IV was used, since the sum A + B was found to be very insensitive to the fitted values of k_f and k_s , whereas the value of B returned could vary by up to 50%.

For the experiments carried out in SF₆ the ratio $k_a/(k_a + k_b)$ was found to be (0.75 ± 0.1), while in He a ratio (0.85 ± 0.1) was found. The error bars are 2σ . Taking $k_a/(k_a + k_b) = 0.8$ and $(k_a + k_b) = 5.1 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ yields $k_a = 4.1$ $\times 10^{-12}$ cm³ molecule⁻¹ s⁻¹.

The maximum CH₃S concentration was also found to increase linearly with the O₃ concentration, indicating that OH + CH₃SH does indeed give CH₃S. The total concentration of CH₃S produced is given by

$$[CH_3S] \approx 2F(\sigma_c[CH_3SH] + 0.9\sigma_o[O_3]\Phi_r)$$

where

F = laser fluence σ_c = CH₃SH cross section at 248 nm

 $\sigma_0 = O_3$ cross section at 248 nm

$$P_r = yield of CH_3S from OH + CH_3SH$$

and the factor 0.9 takes account of the $O(^1D)$ quantum yield from O_3 photolysis. It is assumed that every $O(^1D)$ reacts with H_2O .

A plot of the CH₃S concentration, normalized to the photolysis laser fluence, versus $[O_3]$ is shown in Figure 3 for one series of experiments where the CH₃SH concentration was held constant. The intercept is equal to twice the yield of CH₃S found in an experiment with no O₃ present. The slope is proportional to Φ_r . To avoid having to measure *F*, we can use the ratio of the slope

Figure 3. Plot of CH₃S yield normalized to a constant laser fluence versus [O₃]. [CH₃SH] = 1.05×10^{15} cm⁻³, total pressure 96 Torr of SF₆, and laser fluence $\approx 1 \times 10^{14}$ photons cm⁻².

to intercept, $(0.9\sigma_0\Phi_r/2\sigma_c[CH_3SH])$, from which Φ_r is calculated. The results of three such series of experiments with different concentrations of CH₃SH and laser fluence yield $\Phi_r = 1.1 \pm 0.2$. The quoted error is 2σ and includes estimated systematic errors. This is the first direct measurement of the product yield in the reaction of OH with an organic sulfide.

Discussion

The work described here suggests that CH_3S reacts rapidly with O_3 , presumably to form $CH_3SO + O_2$.

$$CH_3S + O_3 \rightarrow CH_3SO + O_2$$

This reaction is analogous to the reaction of HS with O₃ to give HSO. The only previous attempt to study this reaction was by Black and Jusinski,⁷ who used much larger concentrations of both O₃ and CH₃S. They found no evidence for a reaction and estimated $k \le 8 \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹. However, under their conditions ($[O_3] = 1.1 \times 10^{16}$ molecules cm⁻³ and $[CH_3SH] =$ 7.7×10^{14} molecules cm⁻³) regeneration of CH₃S would have been so rapid that they would not have observed the initial decay. The exact mechanism for the CH₃S regeneration, i.e., reaction b, being an elementary step or proceeding via the formation of OH would not have mattered in their experiment. Also, H atoms produced in their system would have regenerated CH₃S on the time scale of the measurements via the sequence, $H + O_3 \rightarrow OH + O_2$ and $OH + CH_3SH \rightarrow CH_3S + H_2O$. By utilizing much lower concentrations of CH_3S ($\leq 10^{12}$ molecules cm⁻³) and O_3 ($< 1.25 \times$ 10^{14} molecules cm⁻³), we have avoided problems due to secondary chemistry and we are able to observe the actual decay of CH₃S radicals. Nevertheless, we must stress that the regeneration of CH₃S introduces uncertainty into our analysis. We feel reasonably confident that the range $k = (4.1 \pm 2.0) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1}$ s^{-1} encompasses uncertainties inherent in the analysis and the possible occurrence of a heterogeneous reaction between CH₃SH and O_3 . This value did not depend on the concentrations of CH₃SH and H₂O, laser fluence, pressure of the diluent gas, and the nature of the diluent gas, i.e., He or SF_6 . (see Figure 2). The intercept in Figure 2 is due to errors in our analyses and/or k_d being not equal to k_c . When the line is forced to go through the origin, the value $k_a + k_b$ we get is no more than 20% different from the quoted value.

The mechanism of the regeneration is not elucidated at this stage. Friedl et al.⁸ and Wang and Howard¹⁰ postulated that HSO reacts with O₃ to generate HS.

$$HSO + O_3 \rightarrow HS + 2O_2$$

However, the analogous reaction for CH₃S would be endothermic by as much as 14 kcal mol⁻¹, based on $\Delta H_{\rm f}^{\circ}$ for CH₃SO of -16 kcal mol^{-1,18} It seems unlikely that the S-O bond energies in HSO and CH₃SO should differ by 14 kcal mol⁻¹. It should be noted that the thermochemistry of oxygenated sulfur-containing radicals is presently not very well defined.

A second explanation for the regeneration is production of OH radicals. A direct exothermic channel would be

$$CH_3SO + O_3 \rightarrow CH_2SO + O_2 + OH$$

for which $\Delta H^{\circ} = -20$ kcal mol⁻¹. The above multistep mechanism cannot be excluded at this stage.

The impact of this reaction on the chemistry of the marine troposphere can not be determined directly. If the reaction results

(18) Benson, S. W. Chem. Rev. 1978, 78, 23.

in removal of CH₃S, then it will almost certainly be the dominant loss process for CH₃S. Using rate coefficients determined in this laboratory for the reactions of CH₃S with O₃, NO₂, and O₂, and typical tropospheric mixing ratios of 3×10^{-8} , 1×10^{-10} , and 0.21 for these compounds, we estimate first-order loss rates for CH₃S of 3.5 s^{-1} , 0.15 s^{-1} , and $< 13 \text{ s}^{-1}$, respectively. As discussed in our earlier paper, the rate coefficient for the O_2 reaction is possibly an order of magnitude lower than this upper limit. The fate of the reduced sulfur then depends on the reactions of CH₃SO. If CH₃SO reacts only with O₃ in the atmosphere to simply regenerate CH₃S, then the reactions will not constitute a loss for CH₃S or CH₃SO. However, if other molecules oxidize CH₃SO or the $CH_3SO + O_3$ reaction does not yield CH_3S , the conversion of CH₃S to CH₃SO will give the true lifetime of CH₃S. For example, if O₂ reacts with CH₃SO with a rate coefficient $\geq 2 \times 10^{-19}$ cm³ molecule⁻¹ s⁻¹, then CH₃SO would be lost exclusively via this reaction in the atmosphere. Experimental studies on the kinetics and mechanisms of CH₃SO reactions are needed to understand the atmospheric oxidation pathway for CH₃S.

Acknowledgment. This work was supported by NOAA as a part of the National Acid Precipitation Assessment Program.

ARTICLES

Hydrogen Bonding and Reaction Specificity in Lactate Dehydrogenase Studied by Raman Spectroscopy

Hua Deng,[†] Jie Zheng,[†] John Burgner,^{*,‡} and Robert Callender^{*,†}

Physics Department, City College of the City University of New York, New York, New York 10031, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 (Received: September 26, 1988; In Final Form: December 27, 1988)

The Raman spectrum of a small molecule or molecular molety when bound to sizable proteins can be measured by using difference techniques developed in our laboratory. We have applied this method in obtaining the Raman spectrum of the cofactor acetylpyridine adenine dinucleotide, APAD⁺, when bound to lactate dehydrogenase. The Raman data permit a characterization of some of the molecular interactions responsible for the stereochemistry of the reaction catalyzed by this enzyme. We find that the enzyme forms a strong hydrogen bond with the cofactor's carboxamide group and suggest that this is at least partially responsible for the very high degree of stereochemistry fidelity observed with this enzyme.

Introduction

An important issue of enzymatic catalysis is that enzymes use noncovalent interactions to facilitate the making and breaking of covalent bonds and to perform stereospecific reactions.¹ The energy and origin of these noncovalent interactions are generally difficult to assess experimentally. In this paper, we investigate the origins of the bonds between enzyme and coenzyme that are at least partially responsible for the stereochemistry of the reaction catalyzed by lactate dehydrogenase and that are found generally in the pyridine-dependent dehydrogenases, using classical Raman spectroscopy. Raman spectroscopy provides detailed information concerning these molecular properties and the interactions between molecules and molecular groups.² For the study of small molecules at the active sites of proteins, much use has been made of resonance-enhanced Raman spectroscopy. The enhanced spectrum

SCHEME I

of the colored prosthetic group so dominates the protein classical Raman spectrum that it is easily detected despite its small relative mass. Unfortunately, this approach is limited to those cases where

City University of New York. [‡]Purdue University.

Reviewed in: (a) You, K. Methods Enzymol. 1982, 87, 101. (b) You,
 K. CRC Crit. Rev. Biochem. 1985, 17, 313. (c) Fersht, A. Enzyme, Structure, and Mechanism, 2nd ed.; Freeman: New York, 1985.
 (2) Reviewed in: (a) Biological Applications of Raman Spectroscopy;
 Spiro, T., Ed.; Wiley: New York, 1987; Vols. I and II. (b) Carey, P. R. Biochemical Applications of Raman and Resonance Raman Spectroscopy;
 Academic Press: New York, 1987. Academic Press: New York, 1982.