J. CHEM. SOC., CHEM. COMMUN., 1986

Use of Hydrogen Selenide for Synthesis of Binuclear Palladium Complexes containing Bridging Selenide, and their Conversion into Novel Dimetallic Selenoxides

Gabor Besenyei, Chung-Li Lee, and Brian R. James*

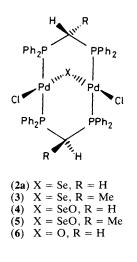
Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Y6

The complexes $[Pd_2Cl_2(\mu-PPh_2CH(R)PPh_2)_2]$, where R = H or Me, react with H_2Se or elemental Se to yield the bridging-selenide derivatives $[Pd_2Cl_2(\mu-Se)\{\mu-PPh_2CH(R)PPh_2\}_2]$; these, on treatment with Bu^tOOH, yield the corresponding μ -SeO (dimetallic selenoxide) species.

We have reported recently¹ on reaction (1) [X = S, dpm = bis(diphenylphosphino)methane], which allows for the quantitative recovery of H₂ from H₂S, and it was of considerable interest to see if such chemistry existed for the X = Se and O systems.

$$[Pd_2Cl_2(\mu-dpm)_2] + H_2X \rightarrow [Pd_2Cl_2(\mu-X)(\mu-dpm)_2] + H_2 \quad (1)$$
(1)
(2a) (X = Se)

A corresponding reaction does occur with H_2Se , although accompanying replacement of the terminal chloride ligands by SeH^- is also observed, which is presumably related to the higher acidity of H_2Se compared to that of H_2S ; the reaction[†] gives a mixture of the A-frame complexes (2a), $[Pd_2Cl(SeH)(\mu-Se)(\mu-dpm)_2]$ (2b), and $[Pd_2(SeH)_2(\mu-Se)(\mu-dpm)_2]$ (2c). Complex (2a) can be made independently by treatment of (1) with elemental, amorphous selenium.[‡] The ¹H n.m.r. spectra of (2a—c) (Table 1) reveal the inequivalence of the methylene protons and the virtual coupling to the remote phosphorus nuclei, exactly analogous to the data reported³ for $[Pd_2Cl_2(\mu-S)(\mu-dpm)_2]$; the resonance for coordinated SeH⁻ in (2b) and (2c) is seen, respectively, at δ -3.52 (t, J_{HP} 13.00 Hz) and δ -3.56 (qn, J_{HP} 6.39 Hz), differences in splitting resulting from coupling to two and four P atoms, respectively. The recently isolated *anti*-isomer of


[†] H₂Se, generated *in situ* from Al₂Se₃, was transferred *via* Schlenktube techniques to cooled CH₂Cl₂ solutions of (1) [or (2a)]; after *ca*. 1 h at 20 °C, addition of MeOH to a concentrated solution precipitated a mixture of (2a), (2b), and (2c).

 $[\]ddagger$ Complex (1) was stirred with freshly prepared red selenium² [Se: (1) = 3] in CH₂Cl₂ for 1.5 h under N₂; removal of excess of Se by filtration, and concentration to a small volume, followed by addition of MeOH, yielded the pure, brown, crystalline product in 50% yield (C, H, and Se elemental analyses are satisfactory).

Table 1. N.m.r.	spectral	data ^a for	the	dinuclear	palladium	complexes.
	opeenar	auta 101		amaviear	panaanan	eompreneo.

Compound		¹ H, $\delta_{\rm H}$ splitting pattern ($J_{\rm HH}, J_{\rm HP}, {\rm Hz}$)	${}^{31}P{}^{1}H}, \delta_{P}p.p.m.$
(2a)	CH ₂ :	4.91 d.qn. (13.05, 5.76), 3.63 d.qn. (13.05, 3.51)	4.0 s
(2b) ^b	CH ₂ :	4.98 d.qn. (13.07, 6.15), 3.80 d.qn. (13.07, 3.44)	AA'BB'¢
(2c) ^d	CH ₂ :	5.03 d.qn. (13.31, 5.76), 4.00 d.qn. (13.31, 3.45)	13.2 s
(3)	CH:	5.86 t.qt. (7.29, 13.75), 4.09 un	AA'BB'e
	$C(CH_3)$:	1.33 d.t. (7.29, 13.16), 0.98 d.t. (7.83, 10.07)	
(4)	CH ₂ :	6.09 d.t. (13.13, 13.29), 4.01 d.t. (14.25, 8.50)	f
	-	2.64 m, 2.53 m	
(5) ^g	CH:	6.97 t.qt. (7.33, 15.47), 3.53 t.qt.t. (7.00, 15.00, 2.50 ^h)	f
	$C(CH_3)$:	1.13 d.t. (7.33, 12.70), 1.00 d.t. (7.00, 10.26)	
(6)	CH ₂ :	4.90 d.qn. (13.0, 5.6), ⁱ 2.53 d.qn. (13.0, 3.54) ⁱ	

^a Measured at ambient temperatures in CD_2Cl_2 or $CDCl_3$; δ_H ; proton integrations were correct in every system; δ_p downfield relative to external 85% H₃PO₄; s = singlet, d = doublet, t = triplet, qt = quartet, qn = quintet, un = unresolved multiplet, m = overlapping multiplets. ^b $\delta(SeH) - 3.52$ t, $J_{HP} = 13.00$ Hz. ^c Major peaks centred at δ 11.2 and 5.7. ^d $\delta(SeH) - 3.55$ qn, $J_{HP} = 6.39$ Hz. ^e δ 40.49, 22.83, and 20.21, 2.50. ^f Decomposition in solution during free induction decay (FID) accumulation. ^g In principle, two isomers are possible for this compound, depending on the orientation of the selenium-bound oxygen atom; however, only one isomer is observed in the n.m.r. spectrum. ^h Long range coupling to remote P atoms. ⁱ Measured at 0 °C during decomposition.

 $[Pd_2Cl_2(\mu-dpmMe)_2]$ [where dpmMe is 1,1-(diphenylphosphino)ethane, and *anti* refers to the disposition of the Me groups with respect to the Pd–C–Pd plane]⁴ reacts similarly with Se, but more sluggishly, to give (3), in which the two methyl (and methine) groups are now inequivalent, and coupling occurs only to the adjacent P atoms (Table 1).

Compounds (2a) and (3) were readily converted into their (μ -SeO) derivatives (4) and (5), *via* a range of O-atom donors, optimum yields being obtained with Bu¹OOH.§ The incorporation of the O-atom makes inequivalent all four of the –CH₂-protons in (4), and the sets of –CH(CH₃) protons in (5) (Table 1). The n.m.r. data for (4) resemble closely those for the corresponding μ -SO complex.¹ In contrast to the latter, no further oxidation to the μ -SeO₂ species is observed. To our knowledge, the μ -SeO derivatives are the first such dimetallic selenoxides to be reported, although Rauchfuss and coworkers have reported recently on the transient formation in solution of a μ_3 -SeO moiety within an Fe₂Pt species.⁵ I.r. bands found at ~770 cm⁻¹ (Nujol) for (4) and (5) are assigned to v_{SeO}.

Compound (1) in CH_2Cl_2 -MeOH does react with H_2O [cf. equation (1)], but the reaction is complex and ³¹P n.m.r. data indicate numerous and, as yet, largely uncharacterized products, although a µ-oxo species may well be a precursor to some of these. The complex $[Pd_2Cl_2(\mu-O)(\mu-dpm)_2]$, (6), is almost certainly formed at -50 °C in CD₂Cl₂ on treating (1) with an equimolar amount of *m*-chloroperbenzoic acid; there is a rapid colour change from orange to lemon yellow, and the n.m.r. data (Table 1) are similar to those of the µ-Se species (2a), and the μ -S analogue.³ Decomposition of the μ -oxo species occurs on warming above -50 °C, to give again a complex mixture of unidentified products. Of note, the source of oxygen in a reported $[Os_2Cl_6(\mu-O)(\mu-dpm)_2]$ complex was not identified,⁶ although extraction of oxygen from H_2O to give μ -oxo complexes is well documented for the early transition metals.7

Clearly, extraction of the main group element from H_2X (X = O, S, Se) as a dianion by transition metal complexes, with concomitant evolution of dihydrogen, now seems to be established, and is of interest from the viewpoints of inorganic syntheses, and H_2 recovery.

We thank N.S.E.R.C. for funding (operating grant to B. R. J., and an International Scientific Exchange award to G. B.), the Isaak Walton Killam Foundation for a postdoctoral fellowship (to C-L. L.) administered by the University of British Columbia, and Johnson Matthey for the loan of Pd.

Received, 30th July 1986; Com. 1088

References

- 1 C-L. Lee, G. Besenyei, B. R. James, D. A. Nelson, and M. A. Lilga, J. Chem. Soc., Chem. Commun., 1985, 1175.
- 2 G. Gattow, Z. Anorg. Allg. Chem., 1962, 317, 245.
- 3 A. L. Balch, L. S. Brenner, and M. M. Olmstead, *Inorg. Chem.*, 1979, **18**, 2996.
- 4 C-L. Lee, Y-P. Yang, S. J. Rettig, B. R. James, D. A. Nelson, and M. Lilga, *Organometallics*, 1986, in the press.
- 5 J. E. Hoots, D. A. Lesch, and T. B. Rauchfuss, *Inorg. Chem.*, 1984, 23, 3130.
- 6 A. R. Chakravarty, F. A. Cotton, and W. Schworzer, *Inorg. Chem.*, 1984, 23, 99.
- 7 F. Bottomley, D. F. Drummond, G. O. Egharevba, and P. S. White, Organometallics, 1986, 5, 1620; F. Bottomley, G. O. Egharevba, and P. S. White, J. Am. Chem. Soc., 1985, 107, 4353.

[§] For example, (2a) was stirred with a 10-fold excess of Bu^tOOH in CH_2Cl_2 for 1 h; addition of diethyl ether yielded orange crystals of (4) in 85% yield. Elemental analysis, including O and Se, is satisfactory.