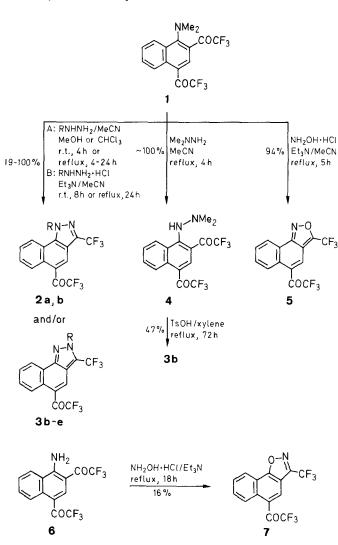
June 1990 Papers 481

A Convenient and Facile Synthesis of Fluorine-Containing 1H-, 2H-Benz[g]indazoles and Naphthisoxazoles by Aromatic Nucleophilic N-N Exchange Reaction of N,N-Dimethyl-2,4-bis(trifluoroacetyl)-1-naphthylamine with Hydrazines and Hydroxylamine

Masaru Hojo,* Ryōichi Masuda, Etsuji Okada

Department of Industrial Chemistry, Faculty of Engineering, Kobe University, Kobe 657, Japan


N,N-Dimethyl-2,4-bis(trifluoroacetyl)-1-naphthylamine (1) undergoes an aromatic nucleophilic N-N exchange reaction with hydrazines followed by cyclocondensation to afford the corresponding fluorine-containing 1H- and 2H-benz[g]indazoles 2, 3 in excellent yields. This reaction can be extended to the synthesis of 5-trifluoroacetyl-3-trifluoromethylnaphth[1,2-c]isoxazole (5) using hydroxylamine.

In our studies¹⁻³ on novel nucleophilic substitution reactions at aromatic carbon activated by trifluoroacetyl groups, it was found that N,N-dimethyl-2,4-bis-(trifluoroacetyl)-1-naphthylamine (1), which is readily prepared from N,N-dimethyl-1-naphthylamine and trifluoroacetic anhydride, undergoes nitrogen-nitrogen exchange reactions with various amines¹ and amino acids.3 This exchange reaction proceeds easily and cleanly under mild conditions to afford the corresponding nitrogen-nitrogen exchanged 2,4-bis(trifluoroacetyl)-1naphthylamine derivatives in high yields. As an extension of this work, we used this type of aromatic nucleophilic substitution with bifunctional N-nucleophiles such as hydrazines and hydroxylamine, to prepare naphthalene-fused pyrazoles and isoxazoles bearing a trifluoromethyl group. The biological activities of these fluorine-containing heterocycles have attracted considerable attention in recent years due to their potential use in medicinal and agricultural science.4-6

N-Unsubstituted 1H-benz[g]indazole derivative 2a was obtained in 100% yield from the reaction of 1 with hydrazine hydrate in refluxing acetonitrile for 4 h. ⁷ Treatment of 1 with methylhydrazine at room temperature in acetonitrile gave quantitatively a mixture of the two regioisomers (2b and 3b) in a ratio of about 1:4. Interestingly, this ratio is very solvent-dependent. In methanol, the ratio changes to 1:1 (yield: 79%). Rerecrystallization of this mixture hexane/benzene gave pure isomer 2b, having mp 168-169°C. In contrast, the reaction in refluxing chloroform afforded regioselectively 2H-benz[g]indazole 3b in a quantitative yield. 7,8 Compound 3b was independently synthesized in 47% yield, by heating 4 with ptoluenesulfonic acid in refluxing xylene for 72 h. tert-Butylhydrazine hydrochloride reacted with 1 at room temperature for 8 h in the presence of triethylamine to afford solely 3c in 92% yield.

Likewise, arylhydrazines gave 2-aryl-2H-benz[g] indazoles 3d, e regioselectively and in excellent yields (Table 1). The exclusive formation of 2H-regioisomers 3 is probably due to steric hindrance by the *tert*-butyl and aryl groups toward the attacking nitrogen atom.

The possibility that the reaction proceeds via the prior formation of a hydrazone at the 2-trifluoroacetyl group followed by an intramolecular N-N exchange to give the cyclized product seems unlikely, since the reaction of 1

Table 1. Benz[g]indazoles 2 and 3 Prepared from 1 and Hydrazines⁷

ď

Рh

4-0₂NC₆H₄

Solvent	Additive	Temper- ature	Time (h)	Product	Yield ^a (%)
MeCN	none	reflux	4	2a	100
MeCN	none	r.t.	4	2b/3b	19/81 ^b
MeOH	none	r.t.	4	2b/3b	39/40 ^b
CHCl ₃	none	reflux	18	3b	100
MeCN	Et_3N	r.t.	8	3e	92
MeCN	none	reflux	24	3d	100
MeCN	Et ₃ N	reflux	24	3e	83

^a Yield of isolated products.

2, 3

R

b

Me

c

t-Bu

b Product ratios were determined from integrated ¹H-NMR spectra.

Table 2. Physical and Spectral Data of Compounds 2-5 and 7

Compound	mp (°C) ^a (solvent)	Molecular Formula ^b	IR (KBr)°	$v(cm^{-1})$ $C = O$	1 H-NMR (CDCl ₃ /TMS) d δ , J (Hz)	¹³ C-NMR (CDCl ₃ /TMS) ^e δ, C-9b
			NH			
2a	247-248 (benzene/ EtOAc)	$C_{14}H_6F_6N_2O$ (332.2)	3260	1710	7.43–7.73 (m, 2 H, H-7, H-8), 8.28– 8.65 (m, 3 H, H-4, H-6, H-9), 13.41–14.58 (br, 1 H, NH) ^f	141.5 ^f
2b	168–169 (hexane/ benzene)	$C_{15}H_8F_6N_2O$ (346.2)	-	1715	4.53 (s, 3 H, NCH ₃), 7.56–7.73 (m, 2H, H-7, H-8), 8.29–8.46 (m, 2H, H-4, H-9), 8.78 (dd, 1 H, <i>J</i> = 3, 7, H-6)	139.0, 139.8 ^f
3b	151-152 (hexane/ benzene)	$C_{15}H_8F_6N_2O$ (346.2)		1707	4.27 (s, 3H, NCH ₃), 7.46–7.67 (m, 2H, H-7, H-8), 8.24 (s, 1H, H-4), 8.37–8.58 (m, 2H, H-6, H-9)	146.1
3c	138-139 (hexane/ benzene)	$C_{18}H_{14}F_6N_2O$ (388.3)		1700	1.86 (s, 9 H, C(CH ₃) ₃), 7.49–7.64 (m, 2 H, H-7, H-8), 8.38 (s, 1 H, H-4), 8.44–8.65 (m, 2 H, H-6, H-9)	144.2
3 d	154–155 (hexane/ benzene)	$C_{20}H_{10}F_6N_2O$ (408.3)	_	1706	7.36–7.76 (br m, 7H, H-7, H-8, C ₆ H ₅), 8.34 (s, 1H, H-4), 8.46–8.64 (m, 2H, H-6, H-9)	146.9
3e	178–179 (hexane/ benzene)	$C_{20}H_9F_6N_3O_3$ (453.3)		1713	7.54–7.90 (m, 4H, H-7, H-8, 2H _{arom}), 8.28–8.65 (m, 5H, H-4, H-6, H-9, 2H _{arom})	147.7
4	127–128 (CHCl ₃)	$C_{16}H_{12}F_6N_2O_2$ (378.3)	3313	1695, 1653	2.63 (s, 6H, $N(CH_3)_2$), 7.20–7.70 (m, 3H, H-6, H-7, H-8), 7.8–8.5 (br, 1H, NH), 7.97 (s, 1H, H-3), 8.92 (dd, 1H, $J = 2$, 8, H-5)	-
5	79-80 (hexane)	$C_{14}H_5F_6NO_2$ (333.2)	-	1725	7.59–7.86 (m, 2H, H-7, H-8), 7.99 (s, 1H, H-4), 8.16–8.62 (m, 2H, H-6, H-9)	155.6
7	105-106 (hexane)	$C_{14}H_5F_6NO_2$ (333.2)	-	1717	7.49–7.82 (m, 2 H, H-7, H-8), 8.26–8.66 (m, 3 H, H-4, H-6, H-9)	165.0

^a Uncorrected.

- ^d Measured using a JEOL PMX-60SI spectrometer.
- e Recorded on a JEOL FX-90Q spectrometer.

with N,N-dimethylhydrazine gave the exchange product 4 quantitatively⁷ and the corresponding hydrazone could not be detected.

The structures of compounds 2a and 3c-e were determined on the basis of their 1H - and ^{13}C -NMR spectra. The 1H -NMR spectral data of the naphthalene-ring protons (H-4, -6 and -9) for the 3-isomers are different than those of the 2-isomers. In the ^{13}C -NMR spectra, the signal of the naphthalene-ring carbon (C-9b) bearing nitrogen occurs more downfield for $3 (\delta = 144.2-147.7)$ than for $2 (\delta = 139.0-141.5)$.

Hydroxylamine hydrochloride was also successfully used as a nucleophile in reaction with 1 to give 5-trifluoroacetyl-3-trifluoromethylnaphth[1,2-c]isoxazole (5) in high yield.⁷ Its possible regioisomer, the naphth[2,1-d]isoxazole derivative 7 was prepared in low yield by heating 2,4-bis(trifluoroacetyl)-1-naphthylamine (6)¹ with hydroxylamine hydrochloride in refluxing triethylamine for 18 h.^{9,10} ¹³C-NMR spectrometry enabled discrimination between these two isomers. The nitrogen-substituted carbon (C-9b) of 5 appeared at $\delta = 155.6$, while the oxygen-substituted carbon (C-9b) of 7 gave a signal at $\delta = 165.0$.

The present method is experimentally simple, convenient and useful for the synthesis of CF₃-containing

benz[g]indazoles and naphthisoxazoles which are not easily obtained by other methods.¹¹ Evaluation of biological activities for 2–5 and 7 is now under way.

5-Trifluoroacetyl-3-trifluoromethyl-1H-benz[g]indazoles and -2H-benz[g]indazoles 2, 3; Typical Procedure:

Method A (in the cases of hydrazine monohydrate, methyl- and phenylhydrazines): To a stirred solution of 1 (1.00 g, 2.75 mmol) in CHCl₃ (20 mL) is added methylhydrazine (164 mg, 3.57 mmol) and the mixture is refluxed for 18 h. After removal of the solvent 3b is obtained; yield: 957 mg (100%).

Benzindazole derivative **3d** is purified by silica gel column chromatography (hexane/benzene, 1:2).

Method B (in the cases of tert-butyl- and p-nitrophenylhydrazine hydrochlorides): To a suspension of p-nitrophenylhydrazine hydrochloride (730 mg, 3.85 mmol) and $\rm Et_3N$ (389 mg, 3.85 mmol) in MeCN (20 mL) is added 1 (1.00 g, 2.75 mmol), and this mixture is refluxed for 24 h. The solvent is then removed under reduced pressure and $\rm CH_2Cl_2$ (100 mL) is added to the residue. This solution is washed with $\rm H_2O$ (200 mL) and dried (Na₂SO₄). The solvent is evaporated, and the crude mixture is chromatographed on a silica gel column (5 × 15 cm; 200 mesh; hexane/benzene, 2:3) to give 3e; yield: 1033 mg (83 %).

N,N-Dimethyl-N'-[2,4-bis(trifluoroacetyl)-1-naphthyl]hydrazine 4: To a stirred solution of 1 (1.00 g, 2.75 mmol) in MeCN (20 mL) is added N,N-dimethylhydrazine (198 mg, 3.30 mmol) and stirring is continued while refluxing for 4 h. Removal of the solvent under reduced pressure affords 4; yield: 1038 mg (100%).

Satisfactory microanalyses obtained: $C \pm 0.39$, $H \pm 0.27$, $F \pm 0.28$, $N \pm 0.28$; exception: 7, N + 0.54.

^c Recorded on a Hitachi Model EPIG3 grating spectrophotome-

f In acetone- d_6 .

June 1990 Papers 483

Synthesis of 2H-Benz[g]indazole Derivative 3b from 4:

A solution of **4** (600 mg, 1.59 mmol) and p-toluenesulfonic acid monohydrate (91 mg, 0.53 mmol) in xylene (8 mL) is refluxed for 72 h with stirring. The solvent is removed *in vacuo* to afford the crude mixture, which is chromatographed on a silica gel column (3×15 cm; 200 mesh; benzene) to give **3b**; yield: 259 mg (47%).

5-Trifluoroacetyl-3-trifluoromethylnaphth [1,2-c] is oxazole~(5):

To a suspension of hydroxylamine hydrochloride (211 mg, 3.03 mmol) and $\rm Et_3N$ (306 mg, 3.03 mmol) in MeCN (20 mL) is added 1 (1.00 g, 2.75 mmol), and stirring is continued while refluxing for 5 h. The solvent is removed in vacuo and $\rm CH_2Cl_2$ (100 mL) is added to the residue. The solution is washed with $\rm H_2O$ (200 mL), dried ($\rm Na_2SO_4$), and concentrated to afford the naphth-isoxazole derivative 5; yield: 861 mg (94%).

5-Trifluoroacetyl-3-trifluoromethylnaphth[2,1-d]isoxazole (7):

To a stirred suspension of hydroxylamine hydrochloride (765 mg, 11.01 mmol) in Et₃N (20 mL) is added 2,4-bis(trifluoroacetyl)-1-naphthylamine (6) (1846 mg, 5.51 mmol), and this mixture is refluxed for 18 h. The mixture is then poured into ice-cold 1 N HCl (100 mL), and CH_2Cl_2 (100 mL) is added. The organic layer is separated, washed with H_2O (200 mL), and dried (Na₂SO₄). Removal of the solvent gives a crude mixture of 6 and 7, which is chromatographed on a silica gel column (5×15 cm; 200 mesh; EtOAc) to furnish 7; yield: 293 mg (16%).

Received: 2 August 1989; revised: 3 November 1989

(1) Hojo, M.; Masuda, R.; Okada, E. Tetrahedron Lett. 1987, 28, 6199.

- (2) Hojo, M.; Masuda, R.; Okada, E. Tetrahedron Lett. 1988, 29,
- (3) Hojo, M.; Masuda, R.; Okada, E.; Miya, H. Synthesis 1989, 550
- (4) Filler, R., in: Organofluorine Chemicals and Their Industrial Applications, Banks, R.E. (ed.), Ellis Horwood, London, 1979, p. 123.
- (5) Biomedicinal Aspect of Fluorine Chemistry, Filler, R., Kobayashi, Y. (eds.), Kodansha & Elsevier Biomedical, Tokyo, 1982, p. 1.
- (6) Welch, J. T. Tetrahedron 1987, 43, 3123.
- (7) Although the reaction of 1 with hydrazine hydrate, methylhydrazine (in CHCl₃), N,N-dimethylhydrazine, arylhydrazines and hydroxylamine hydrochloride proceeded even at room temperature, some starting material was recovered; elevated temperature were necessary to complete these reactions.
- (8) It is not certain at present why the product distribution is solvent-dependent. Further investigations are now in progress.
- (9) Prolonged reaction times caused decomposition of the products.
- (10) Compound 7 is probably produced by prior formation of the oxime of 6 at the 2-trifluoroacetyl group, followed by an intramolecular N-O exchange reaction. It is thought that the ketoxime formation takes precedence over N-N exchange due to the low ability of NH₂ as a leaving group compared to Me₂N.¹
- (11) Compounds 2-5 cannot be obtained by reaction of 1-chloroor 1-methoxy-2,4-bis(trifluoroacetyl)naphthalene with hydrazines and hydroxylamine, because of difficulty in bistrifluoroacetylation of 1-chloro- and 1-methoxynaphthalenes with trifluoroacetic anhydride.