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SUMMARY

The thiolates, generated in situ by the reaction of 2-ner-
captobenzothiazole (1) and its analogues (2) and (3) with sodium
hydride, react under UV irradiation with perfluoroalkyl iodides
{4)-(8) to give the corresponding hetercaromatic perfluorocalkyl
sulfides (9)-(18) in 50-98% yields. The fact that the UV
irradiation increases the conversion of perfluoroalkyl iodides
and that the radical scavenger di-tert-butylnitroxide suppresses
the reaction demonstrates that the reaction proceceds via an

SRNl mechanism.

INTRODUCTION

The single electron transfer (SET) process is now well recog-
nised as a fundamental reaction in organic chemistry and in the
last two decades it has increased in importance in organofluo-
rine chemistry [l1]. The S-perfluoroalkylation of aromatic {2-4],
heteroaromatic [5] and aliphatic thiols [2,6] with perfluoroalkyl
iodides has been described in a series of papers,but so far,no
reports on N-perfluoroalkylation have appeared. Beugelmans
et al [7] reported that amino groups (NH) of heterocycles react
by an Spyl mechanism with p-nitrobenzyl chloride and gem-halo-
nitroalkanes to give N-alkylation products. Similar hetero-

cycles such as imidazole and benzotriazole react with long
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chain perfluoroalkyl iodides, however, to give C-perfluoroalky-
lation products [8]. Recently, in our laboratory, it was noted
that P-halogenperfluoroethyl halides could be successfully used
for heterocyclic N-perfluoroalkylation, which was preliminarily
thought to proceed via an SET-induced anionic chain mechanism

(Scheme 1) [9]. We have now extended these studies to 2-mercap-

_NUI
XCF,CFyY + Nu~& —— [XCF4CFy Y Nuj ™ ——= (XCF,CF,Y)~

Y +Nu-
— = XCF,CFy»* — XCF,CFoNu + HCF,CFyNu + Cr,=CF,

X,¥Y=Cl,Br or I; Nu’=4 ; ,
N N

Scheme 1.

tobenzothiazole (1) and its analogues 2-mercaptobenzimidazole
(2) and 2-mercaptobenzoxazole (3), in which the N and S atoms,
through a tautomeric equilibrium,could both undergo perfluoro-

alkylation.

RESULTS AND DISCUSSION

Treatment of the appropriate perfluoroalkyl iodides (4)-(7)
under ultraviolet (UV) irradiation with the sodium salt,
generated in situ from 2-mercaptobenzothiazole (1) and sodium
hydride in DMF, gave medium to excellent yields of perfluoro-
alkyl sulfides (9),(11),(13) and (15)(see Scheme 2 and Entries
1,7,13 and 15 in Table 1l). The perfluoroalkyl groups were mainly
directed to the S atom resulting in the products of S-perfluoro-
alkylation and partially gave the corresponding hydrogen-
abstracted products (19)-(22).The photochemical product (17) may
be prepared similarly by treating (1) with diiodide (8) (2:1,
molar ratio), one end of which is attached to the sulfur atom

(Entry 17). The wuse of (1) often affords the coupling
product(24).



23

"2 8wayoss

sz
124
S S=5 S
z \ Jﬂ %
/\ i
s
o
Tolaof(%a0)=3y ‘o=x 81
12205 (%aoy=dy  ‘s=x L1
L300l (%30) =%y ‘HN=X 9T
taol(g0)=3g ‘s=x ST
tzo€(Z30)=98 ‘HN=X ¥1
12405 (2an) =5y ¢z £a0S(%a0)=*y ‘s=x €1 1%a0l(Za0)=%y @
€30l (Zg0) =y zz 10308 (%30)=%g ‘HN=X 21T faol(Cany=dy ¢
€30S (230)=%y 1z 10%30% (C30)=fg “‘s=x 11 £305(%a0) =34 9 0=x ¢
102405 (235)=%n oz 10%308 (230) =% ‘HN=X o1 10%305(Ca0)=%y ¢ EN=X 2
10%205 (230) =%y 67 10%a0f(%40)=3y ‘s=x 6 1o%30t (Ta0)=%y ¥ s=x I

Iy X HS Xa
ZN‘ IRA/HeN 1
HFy + et ¥ +
N a4 N



24

yforseisz  (1-Ls)oz 1(6°27)8T 13 ¥ 0°¢ S € 81

(9°8€)¥C (v1)€2 yep(8LILT %4 ¥ 0°2 8 T LT

(80213)22 % 56(58)9T Z6 ¥ 1 L z 97

(eT)bz  (8D2a3)2L 2 5(S8)ST £ ¥8 ki 0" 1 L 1 St

(9°9)TT  yup(T7L8)VT 68 ¥ € 1 9 z vT

(9T)pz (®0213)12 y'e(86)ET L°¥S ki 0°1 9 T €1

C (09)02 L°91 p) S°1 S r4 Al

0~ g s 1 S z 11

C (12)02 416(05)TT gr9L v S 1 S r4 01

(¢rge)oe (9799311 82 ol 0°1 S T 6

. 0~ g 0°T S 1 8

(€ vT)¥%C (1°¢1)02' yrp(8LITT 6L v 0°1 S T L

(LS)e6T 1(€p)0T 0z o) S 1 ¥ 4 9

1(00T)0T £~ g S 1 4 z S

¢ (TT)6T  y/p(9709)0T L9 ¥ $°T v 4 4

€ (L°TP)6T 0€ o) 0°2 7 T 3

(soea3) ¥z (s*9%)6T 1(27€5)6 68 g 0°2 12 T 4

(9T)¥e (ze)et y 6(LS)6 zTeL ¥ 0°2 id T T
;33U30 51oHY punoduo) (174 13y r3em

5(3)17¥ 30 quoTaTPUOD  jo'nba)
vﬁw\nﬂwﬂmvmuozcoum UOTISI3AUOD uoIT3oEay Hen pS93RA3SqNg Kajug

(40T’D,0L° dWA) S83IRTOTUL Y3ITM S3DTPOI TAYTeOIONTIA8d FO UOTIDEAY

T dTIYL



*{oury3ld woal uollezi(leaskido Aq psieyosSI

fuotzeTAyreOoIONnT3a2d-] dT3zerwoxe jo 3onpoid ayz o3 enp ATqeq

—01d‘wudd g¢~ 32 TRUDBIS DI3STISIDRIRYD B sSey ¥WN Ag p230839p 3onpoad JO junowe TIPWS ¥
!{(L1)-(6) s3onpoad paizerost

2y3 yzim Aboreue Ag pue ¥WN mma Aq yjzoq posodoad 2an3onils pur dKN deq Agq pautwIdlap PYaTX

de1

{A19a13039dsaa (gZ) pue

(LT)“(TT) 203 (G:z) pu® (L:g)'(T:1) suexayo[oAo-suanio3!AToaTioadsal (gT) pue (6) I0J (Lig) pue
(1:1) wnatoajzad-s3eiaoe stum :SMOTTOJ se sauenia’(1sb eorTrs) Aydeabojewoayd Ag psle(OSI
{sp1a1&k poaejos]

{Areat3ivadsal (g) pue () uo paseq aae (gg) pue (¥Z) JO SpPISTA psleTOS]

1133 Buipuodssiizod sy3y Jo °souy

aesu axe syead umsuo.ﬁmmum_mmwmnm~©~mmv wddzg-19 ~ 3E TeublS DI3STaAP3IORIARYD B Sey 3IDNPOAd

‘2T pue OT‘V’'E

sataqua 3dedoxe 00T ST HIY Jo 3eyy snyd 3onpoad paieuraony3 8yl 3O PIATA BUI'MWN J ug

61
tATan13o9dsaa (LI-ET S31a3ud) pIoe Ol3adeOIONT]

-TI13 pue (g pue zT-T S2123um) L3sTow CJDT) O3 20UII2IBI UC PISeq Y YWN dJ Aq pauTtwaeilaqg

61
10-N%ng-3 JO aToW $0Z IO UOTITPPE YITM’dy :D f3eay :d {4y :v

f1:7=(8):(T) 3deox> o13ea aeTowinby

'3



26

Treatment of perfluoroalkyl iodides (4)-(7) and (2) rather
than (1) under UV irradiation afforded similar results (Entrics
4,10,14 and 16). The reaction mainly led to the formation of
perfluoroalkyl sulfides (10),(12),(14) and (16).

When 2-mercaptobenzoxazole (3) was employed as substrate,
aryl sulfide (18) was obtained in a lower yield. Instead, a
large amount of hydroperfluorocalkane (20) was the main product,
accomplished with 35.6% isolated vyield of hecterocycle (25)
(Entry 18 in Table 1).

Proofs of structures for the assigned heterocycles are based
on elemental analyses, mass, NMR, infrared and ultraviolet
spectra (see Table 2 and Table 3).The IR absorption at 1450cm™t
reveals the presence of C=N bond. The characteristic fluorine
signals of the SCF, moiety are observed around 4 8-9.6ppm as a
singlet. The ultraviolet spectra contain two characteristic
long-wave absorption maxima: one in the region of 217-235 mu,
and the other at ~ 285 mp, which are attributable to the §-
substituted derivatives [10,11].

The formation of $- rather than N-perfluorocalkylation may
be because the sulfur anion is more nucleophilic towards carbon
than the nitrogen anion, i.e. nucleophilicity is the dominating
factor [12].

In order to dget further evidence, comparative reactions were
carried out in daylight (70°C) instead of wunder UV irradiation.
The conversion of (4) in reaction with (1) was lowered from 72%
to 8%, and in reaction with (2) was decreased from 67% to 3%
{compare Entry 1 with 2,and Entry 4 with 5). No reactions were
obseryed on treatment of (5) with (1) and (2) (Entry 8 and 11).

From the results,it was anticipated that addition of a radical
inhibitor would suppress the reaction and this has been found to
be the case. The repeated reactions under UV light,with addition
of 20% molar di-tert-butylnitroxide, an SET scavenger, indicate
that the conversion ratios of perfluoroalkyl iodides are notice-
ably reduced (compare Entry 1 with 3,Entry 4 with 6, Entry 7 with
9 and Entry 10 with 12).

The S-perfluoroalkylation of thiolates is formed via an
Spnl mechanism, which was proposed and was well investigated
previously [6]. The fact that UV 1irradiation promotes the

reactions and that the inhibitor, in contrast to UV 1light,
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suppresses the process plus the known resistance to displacement
of halides from perfluorcalkyl halides by Syl or Sy2 processes
[13,14] supports the proposed Sgnyl mechanism. The isolation of
coupling product (24) 1is a convincing evidence that radicals
occur in the reaction system and further confirms the mechanism
described in Scheme 3.

——=— RJI% + ars-

R+ e |

e - Rf' + I7 + Ars:

R+ + ArsSS ————w ArsR~

f f
T -
RfI + ArSRf —_— Rfl + ArSRf
Rf° + "H" —— RfH

2ArS+ ———= ATSOAT

Schene 3.

Detailed insight into the formation of (25) was not sought,
but the literature showed that (27) can readily undergo rearran-
gement to afford (25) [15,16]. It is assumed that (27) is an
intermediate, which might be formed by the attack of (26) on
(18) and from which the observed product (25) 1is offered in a

four~centered mechanism as in Scheme 4.

- QL AL
26 27

four-centered
mechanism

25

Scheme 4,
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TABLE 3

1y ang 19¢ NMR Data

Compd NMR(ppm)a'b
(No.)
19F 1H
9 -7.5(2F,s,CICF,),9.3(2F,s,SCF,), (2H,t,ArH),8.3(1H,
42.3(2F,S,C1CF2),43.3(2F,S,SCCF2) m,ArH)

10 —8.3(2F,s,ClCF2),8.5(2F,s,SCF2) 7.5(3H,m,ArH,NH),
41.3(2F,s,CI1CCF,),42.2(2F,s,SCCF;) 7.7 (28,m,ArH)

11 -7.5(2F,s,C1CF,),9.6(2F,s,SCF,) 7.4(2H,m,ArH),7.7(1H,
42.6(2F,s,ClCCF2),44.3—44.8(6F,m, m,ArH)

SC(CFy)3)

12 —8.0(2F,s,ClCF2),8.6(2F,s,SCF2), 7.3(2H,m,ArH),7.6(20,
42.3-44.0(8F,m,SC(CFy)y) m,ArH),13.6(1H,s ,NH)

13 5.3(3F,s,CF3),9.6(2F,s,SCF,),43.3 7.2(2H,m,AcH) ,7.7(2H,
(2F,s,CF2),45.3(2F,S,SCCF2),47.0 m,ArH)
(2F,s,CFy),50.3(2F,s,CF,)

14 3.6(3F,s,CF3),8.0(2F,s,SCF,),41.6 7.8(2H,m,AxH),8.0(2H,
(2F,s,CF2),44.0(2F,s,SCCF2) m.ArH) ,NI was obscured
45.3(2F,s,CF,),48.6(2F,s,SCCF,)

15 7.0(3F,S,CF3),9.6(2F,s,SCF2),42.3— 7.5(2H,m,ArH),8.1(2H,
48.6(lOF,m,5CF2),50.3(2F,S,CF2) m,Arl)

16 4.3(3F,s,CF3),8.5(2F,s,SCF2),42.3 7.2(2H,m,ArH),7.4(2H,
(2F,s,CF,),45.0(8F,m,4CF,),49.3 m,ArH)

(2F,s,CF2)

17 —lZ.U(ZF,s,ICFZ),9.5(2F,s,SCF2), 7.3(¢2H,m,ArH),7.7(2H,
37.3(2F,5,ICCF,),42.6(2F,s,SCCF,), m,ArH)
44.6(4F,s,middle 2CF,)

18 —8.3(2F,s,ClCF2),9.3(2F,s,SCF2),
42.5-44.5(8F,s,4CF,)

a

Recorded on a Varian EM-360L spectrometer,TMS as internal refe--

rence for lH and except (13)-(16) TFA as external standard for lgF;
b solvents as follows:CCly for (9);DMSO-dg for (10),(12),(14)-(16);
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EXPERIMENTAL

General procedure: Under a nitrogen atmosphere, 80% pure
sodium hydride (10-20 mmole) was added to 10ml DMF solution of
2-mercaptobenzoheterocycle (10 mmole) in a Pyrex flask. After
stirring for several minutes, the corresponding perfluoroalkyl
iodide was added and was exposed to a high pressure mercury lamp
(400w) at a distance of about 15 cm from the flask for 10h (70°C).
The conversion rate was determihed and the RgH was  detected by
19¢ NMR as noted in Table 1. To the reaction mixture was added
2ml ethanol, then 20ml water and 20ml ethyl acetate. Product (24)
was collected by filtration.The-mixture was extracted with ethyl
acetate, washed with water and isolated by chromatographic tech-

niques and/or crystallization from ethanol(see Tables 1 and 2).
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