Stereospecific Synthesis of 2-Deuterio-3-hydroxybutanoate Esters. Regiochemistry and Stereochemistry of Homogeneous Hydrogenation with Wilkinson's Catalyst

Jerry R. Mohrig,* Sandra L. Dabora, Ted F. Foster, and Steve C. Schultz

Department of Chemistry, Carleton College, Northfield, Minnesota 55057

Received July 19, 1983

Hydrogenation of the methyl esters of (Z)- and (E)-3-(benzoyloxy)-2-butenoate produces reduced products in good yield with highly stereoselective syn addition. Reaction of the alkenes with deuterium is preferable to reaction of the 2-deuterioalkenes with hydrogen. NMR measurements indicated 99.8% or greater syn addition of D_2 with the Z alkene. Addition of HD to the E alkene produced no regioselectivity, indicating that either the alkylrhodium intermediate forms without kinetic isotope effects or without regioselectivity.

Hundreds of papers on the use of Rh(I)-phosphine catalysis in the hydrogenation of alkenes have appeared in the past few years and extensive studies of the reaction mechanisms have been carried out.^{1,2} Much less work has been done to exploit the usefulness of Rh(I) catalysis in the synthesis of isotopically labeled molecules of known relative configuration.^{2c} The stereochemical ambiguities and isomerizations that can accompany heterogeneous catalysis are well-known.³ It is not uncommon for deuterium scrambling to accompany the addition of D_2 to alkenes, reflecting adsorption-desorption equilibria on the catalyst surface. Naturally, the value of any measurement of reaction stereochemistry rests upon unequivocal assignment of the configurations of reactant and product. Configurational determinations can be more difficult in acyclic, conformationally mobile molecules than with cyclic systems. Yet, for stereochemical investigations it is vital that the configurational purity of isotopically labeled acyclic substrates be accurately known.

Hydrogenations with Wilkinson's catalyst, Rh(PPh₃)₃Cl (1), have consistently shown syn stereoselectivity, with NMR coupling constants usually being used to distinguish relative configurations.⁴ Of course, it is difficult to assess configurational purity with accuracy by this method. More recent work has focused upon asymmetric hydrogenation of (N-acylamino)alkenes usually with Rh(I) ligated to chiral bis(phosphines); addition of D_2 has been shown to proceed with highly stereoselective syn addition.⁵ It is not clear if chelation of the N-acylamino group to rhodium influences the stereoselectivity of the addition.

Derivatives of β -hydroxybutyric acid are important biochemical metabolites. In fact, polymers of this acid are the dominant carbon and energy storage form for many

bacteria. Many bioorganic studies of this system demand the availability of 2-deuterio- or 2-tritio-3-hydroxybutanoic acid or their esters, in which the relative configurations of the chiral centers are unambiguous. In conjunction with our studies on the stereochemistry of base-catalyzed elimination reactions which produce carbon-carbon double bonds conjugated to carbonyl groups,⁶ we set out to determine the stereoselectivity of homogeneous hydrogenation using 1 with methyl (Z)- and (E)-3-(benzoyloxy)-2butenoate (2).

Our earlier work on the stereospecific synthesis of 2deuterio-3-hydroxybutanoic acid depended upon the $S_N 2$ opening of an epoxide with borodeuteride.7 NMR analysis indicated complete stereoselectivity and product yields were acceptable. It was an efficient synthetic method for isotopically labeled 3-hydroxybutanoic acid, but unfortunately only the RR, SS mixture was available by this route. Homogeneous hydrogenation of 2 seemed an attractive alternate for the synthesis of both 3a and 3b.

Results

The synthesis of β -(acyloxy)- α , β -unsaturated esters can be accomplished in good yield by the method of Casey and Marten.⁸ Clean separation of the Z and E isomers was possible on a silica gel column. The stereochemical assignments in 2a and 2b rest upon NMR shift correlations.^{8,9} Protons that are cis to oxygen and carbalkoxy groups are shifted downfield.

In our initial work we expected to use 2, substituted with deuterium at C-2, as the hydrogenation substrate. Methyl acetoacetate- $2-{}^{2}H_{2}$ (4- ${}^{2}H_{2}$) was synthesized in two cycles from methyl acetoacetate (4) by reaction with NaH in diethyl ether, followed by addition of D_2O/D_2SO_4 . One deuteration cycle produced 4 with 17% H at C-2; two cycles gave $4^{-2}H_2$ with only 3% H at C-2 (multiple NMR integrations). There was also some H/D exchange at C-4

⁽¹⁾ Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Chem. Soc. A 1966, 1711-1732.

^{(2) (}a) Halpern, J. Science (Washington, D.C.) 1982, 217, 401-407. (b) Halpern, J. In "Organotransition-Metal Chemistry"; Ishii, Y., Tsutsiu, M., Eds.; Plenum Press: New York, 1975; pp 109-117. (c) Jardine, F. H. "Progress in Inorganic Chemistry"; Lippard, S. J., Ed.; Interscience: New

York, 1981; Vol. 8, pp 62–144. (3) (a) Rylander, P. N. "Catalytic Hydrogenation in Organic Syntheses"; Academic Press: New York, 1979; pp 31–63. (b) March, J. "Advanced Organic Chemistry", 2nd ed.; McGraw-Hill: New York, 1977; pp 707-715. (4) (a) Birch, A. J.; Walker, K. A. M. Tetrahedron Lett. 1966,

^{4939-4940. (}b) Djerassi, C.; Gutzwiller, J. J. Am. Chem. Soc. 1966, 88, 4537-4538. (c) Gagnaire, D.; Vottero, P. Bull. Soc. Chim. Fr. 1970, 164-167. (d) Senda, Y.; Mitsui, S.; Sugiyama, H.; Seto, S. Bull. Chem. Soc. Jpn. 1972, 45, 3498-3499. (e) Slack, D. A.; Baird, M. C. J. Am.

Chem. Soc. 1976, 99, 5539–5546. (5) (a) Kirby, G. W.; Michael, J. J. Chem. Soc., Perkin Trans. 1 1973, (a) Kilby, C. W., Michael, S. S. Chen. Str., Fernit Trans. 1135, 115-120.
 (b) Detellier, C.; Gelbard, G.; Kagan, H. B. J. Am. Chem. Soc. 1978, 100, 7556-7560.
 (c) Koenig, K. E.; Knowles, W. S. J. Am. Chem. Soc. 1978, 100, 7561-7564.
 (d) Levine-Pinto, H.; Morgat, J. L.; Fromageot, P.; Meyer, D.; Poulin, J. C.; Kagan, H. B. Tetrahedron 1982, 38, 119-123.

⁽⁶⁾ Mohrig, J. R.; Schultz, S. C.; Morin, G. J. Am. Chem. Soc. 1983, 105, 5150.

⁽⁷⁾ Mohrig, J. R.; Vreede, P. J.; Schultz, S. C.; Fierke, C. A. J. Org.

⁽i) Holmig, J. R., Vietele, T. S., Schulz, S. C., Flerke, C. A. J. O'g. *Chem.* 1981, 46, 4655-4658.
(8) Casey, C. P.; Marten, D. F. Tetrahedron Lett. 1974, 925-928.
(9) (a) House, H. O.; Kramar, V. J. Org. Chem. 1963, 3362-3379. (b)
Fraser, R. R.; McGreer, D. E. Can. J. Chem. 1961, 39, 505-509. (c) Jackman, L. M.; Wiley, R. H. J. Chem. Soc. 1960, 2886-2890.

 $(\sim 8\%$ D). Reaction of $4^{-2}H_2$ with isopropenyl acetate and p-toluenesulfonic acid⁸ gave a great deal of H/D exchange and low isotopic yields of $2a^{-2}H_1$. Exchange was not a major problem with triethylamine catalysis and product yields were high (80-90%). Since with amine catalysis benzoyl chloride gives higher yields of enol esters than does acetyl chloride,⁸ we chose the former. Our few reactions with acetyl chloride confirmed the lower yields, although this route has been used recently to produce deuterated β -(acyloxy)crotonates.¹⁰ Since H/D exchange during the reaction always decreased the deuterium content of $2^{-2}H_1$ (93–96% D was normal) and since prevention of H/D exchange during the purification of $4^{-2}H_2$ was troublesome, our later work delayed the incorporation of deuterium until the hydrogenation step.

The best-known method of homogeneous hydrogenation with unambiguous stereochemistry uses diimide as the reductant. Unfortunately, diimide adds slowly to trisubstituted double bonds and those with electron-withdrawing substituents. We found its use for the reduction of 2completely impractical, due to the extremely slow hydrogenation rate and competing pathways for the decomposition of diimide under reduction conditions.

Reduction of 2 in the presence of Rh(PPh₃)₃Cl/benzene led to 85-95% yields of recovered 3. As expected, the Z isomer was reduced substantially faster than the E isomer and addition of D_2 was faster than addition of H_2 under comparable conditions.^{1,5b,c,11,12} At 50 °C and 10.2 atm D_2 the Z isomer (2a) was reduced completely in 24 h and 2bin 5 days. A benzene-ethanol solvent is known to produce faster reduction rates with Wilkinson's catalyst but could not be used because of substantial H/D exchange with the solvent. There was no indication of E/Z isomerization as has sometimes been observed.^{5b,13} Irregular induction periods were not noticed and the reductions were quite reproducible. Slow, irregular reductions of β -(acyloxy)crotonates and the darkening of the reaction mixtures, along with the facile reduction of these substrates with 5% Rh/C, have led to the suggestion that Rh(0) is in fact the active catalyst.¹⁰ This seems unlikely since addition of D₂ to 2 with Rh/C catalysis is accompanied by substantial deuterium incorporation at C-4 of 3; no H/D exchange at C-4 accompanies the homogeneous catalysis.¹⁴ In addition, substantial scrambling of tritium has been observed when H_2/HT was added to α,β -unsaturated carbonyl compounds in the presence of 5% Rh/C but not with $Rh(PPh_3)_3Cl/$ benzene.15

The addition of D_2 to 2a and 2b (reaction 1) gives a clear demonstration of the stereoselectivity of hydrogenation with Wilkinson's catalyst. Figure 1 shows the complementary spectra. As expected, the nondeuterated analogue of 3, methyl 3-(benzoyloxy)butanoate (5), exhibits an ABX pattern in the peaks associated with the C-2 protons; J_{AX} = 7.36 Hz, $J_{BX} = 5.74$ Hz, and $J_{AB} = -15.46$ Hz. Syn addition of deuterium to the Z alkene produced the racemic mixture 3a, methyl (R,R)- and (S,S)-3-(benzoyloxy)[2,3-²H₂]butanoate, whose principal peak is downfield (Figure 1a). The converse is the case with 3b; here, syn addition of deuterium to the E alkene produced the (R,S) and (S,R) mixture (Figure 1b).

Figure 1. (a) The AB portion (protons at C-2) of the 300-MHz NMR spectrum of **3a**. (b) The AB portion of **3b**.

The assignment of relative configurations in 3a and 3b rests upon the comparison of their NMR spectra with those of compounds whose configurations have been determined unambiguously. The NMR spectrum of the known racemic mixture, (R,R)- and (S,S)-S-tert-butyl 3-acetoxy $[2-^{2}H_{1}]$ butanethioate, revealed the C-2 proton in the downfield portion of the AB pattern. Its configurational assignment rests upon the known stereochemistry of the S_N2 reaction, as well as upon confirming values of NMR coupling constants.⁷ That the C-2 proton of 3a is also in the downfield portion of the AB pattern suggests that it has the same configuration as the thioester. Thus, **3a** is a racemic mixture with the R,R and S,S configurations. This can be formed in reaction 1 only by a syn addition of D_2 to 2a. In the same way, 2b reacted by syn addition to give the R,S and S,R mixture 3b.

Confirming evidence for these assignments comes from the work of Rozzell,¹⁰ who related the hydrogenation products from β -(acyloxy)crotonates to (2R),(3S)-3hydroxy[2-²H₁]butanoic acid; the configurational assignments depended upon the syn addition of tritiated diborane to ethyl crotonate.¹⁶ In every known example of 3-hydroxy[2-²H₁]butanoic acid and its esters, the R,R and S,S mixture has the C-2 proton in the downfield part of the AB pattern and the R,S and S,R mixture has the C-2 proton in the upfield part when CDCl₃ is the solvent. This may prove to be a useful correlation for the configurations of other isotopically labeled esters of 3-hydroxybutanoic acid.

A quantitative value for the stereoselectivity with 1 comes from examination of Figure 1a. In this case the geminal deuterium isotope effect¹⁷ should shift the C-2 proton resonance of any **3b** to δ 2.615, where it appears in Figure 1b. There is a barely distinguishable peak at this position in Figure 1a. By analysis of peak heights one can calculate that the stereoselectivity of the deuterium addition to **2a** was 99.8% or greater. Homogeneous catalysis with Rh(PPh₃)₃Cl provides a stereospecific route to **3a** and **3b**.

Preliminary results also indicate that tert-butyl (E)-3acetoxy-2-butenoate reacts with D₂ in the presence of 1 to give the racemic mixture, (R,S)- and (S,R)-tert-butyl 3acetoxy[2,3-²H₂]butanoate, by a stereospecific syn addition.

The minor peaks of Figure 1 result from the presence of small amounts of monodeuterated and nondeuterated products. For example, the two major peaks in the upfield portion of Figure 1a come from addition of HD to 2a to give methyl 3-(benzoyloxy)[3-²H₁]butanoate (6). Vicinal

⁽¹⁰⁾ Rozzell, J. D. Tetrahedron Lett. 1982, 23, 1767-1770.

 ⁽¹¹⁾ Scott, J. W.; Keith, D. D.; Nix, G., Jr.; Parrish, D. R.; Remington,
 S.; Roth, G. P.; Townsend, J. M.; Valentine, D., Jr.; Yang, R. J. Org.
 Chem. 1981, 46, 5086-5093.

 ⁽¹²⁾ Hussey, A. S.; Takeuchi, U. J. Am. Chem. Soc. 1969, 91, 672-675.
 (13) Augustine, R. L.; Van Peppen, J. F. Chem. Commun. 1970, 495-496.

⁽¹⁴⁾ Unpublished deuterium NMR results: Hofmeister, G. E.; Walker, C. B.

⁽¹⁵⁾ Simon, H.; Berngruber, O. Tetrahedron 1970, 26, 161-171.

⁽¹⁶⁾ Willadsen, P.; Eggerer, H. Eur. J. Biochem. 1975, 54, 247-252.
(17) Mantsch, H. H.; Saito, H.; Smith, I. C. P. In "Progress in NMR Spectroscopy"; Emsley, J. W., Feeney, J., Sutcliffe, L. H., Eds.; Pergamon Press: New York, 1977; Vol. 11, pp 216-220.

H-D coupling constants are small and the two protons at C-2 effectively reduce to an AB system, somewhat shifted upfield by the deuterium at C-3. Four tiny peaks in the upfield portion of Figure 1a indicate the presence of nondeuterated 5. A similar pattern can be seen in the downfield portion of Figure 1b. The magnitude of the geminal H-D coupling constant (2.0 Hz in **3b**) is within the expected range.¹⁷

Discussion

Although details of the mechanism may vary for different alkenes and reaction conditions, Halpern's mechanism for catalysis by 1 provides the best starting point.^{2c,18} In part of this pathway, the alkene is seen to coordinate with rhodium to form 8, after oxidative addition of hydrogen has formed the dihydride species 7 (reaction 2). The syn addition of rhodium and hydrogen to the coordinated alkene is the rate-determining step under ordinary conditions. This is followed by cleavage of the carbonrhodium bond in 9 and formation of the second C-H bond with retention of configuration.

(N-acylamino)alkenes, carboxylates, and carboxamides have been shown to chelate with rhodium in cationic complexes involving chelating bis(phosphine) ligands.¹⁹ It is difficult to know if such chelation through alkene carbon and ester oxygen would come into play when 2a or 2b are present in 8 and 9. Formation of 9 has been shown to be regiospecific.^{19a,b}

Addition of HD to C-2 and C-3 of **2a** and **2b** has interesting regiochemical aspects. One might expect to see regioselectivity if a deuterium isotope effect influences the rate of the product-determining step. In one instance, the kinetic isotope effect $(k_{\rm H}/k_{\rm D})$ for the conversion of **8** to **9** was 1.15.^{18a} However, on several occasions a complete lack of regioselectivity has been observed in the addition of HD.^{5b,20} The alkenes varied from propene and styrene to (Z)- α -acetamidocinnamic acid and *N*-vinylacetamide. In the later study, (Z)- α -acetamidocinnamic acid showed modest regioselectivity (1.35/1).^{20b}

It was possible to analyze the spectra in Figure 1 to estimate the regioselectivity in the addition of HD to 2a and 2b. The two major peaks in the upfield portion of Figure 1a result from the addition of HD to 2a, giving 6. A small multiplet at δ 5.5 in the spectrum of 3a is due to

the presence of nondeuterated 5, as well as monodeuterated 10a. Careful integrations of the spectra of 3a and 3b, each from two separate hydrogenations, showed the compositions in Chart I.

An attractive hypothesis for the lack of regioselectivity in the addition of HD to 2b is that there is a prior commitment as to which hydrogen adds in the formation of 9. Since it is clear that formation of the Rh-C and H-C bonds in 9 has syn stereochemistry, only the hydrogen in the plane is able to add. The *trans*-hydrogen cannot add, along with rhodium, in a syn process. Whether deuterium is a trans or cis ligand to the alkene is determined in the oxidative addition step. One expects that there would be an equal equilibrium distribution of H and D in the two ligand positions. Lack of overall regioselectivity would result no matter which carbon is bound to rhodium in 9. The small regioselectivity seen in addition of HD to the Z isomer 2a, which is reduced over five times faster than 2b, may reflect lesser equilibration of 7 and 8.

Conclusion

The addition of hydrogen or deuterium to β -(acyloxy)crotonates in the presence of Rh(PPh₃)₃Cl is a syn process and the stereoselectivity is very high. The reaction provides an efficient synthetic route for 2-deuterio-3hydroxybutanoate esters of unambiguous relative configuration, which will be useful in bioorganic studies. Lack of regioselectivity in the addition of HD to alkenes with Wilkinson's catalyst may simply result from the lack of discrimination between H and D for the axial and equatorial positions of the oxidative addition reaction intermediate.

Experimental Section

General Methods. Proton NMR spectra were run on a 60-MHz Perkin Elmer R-24B spectrometer and a 300-MHz Nicollet NT-300 spectrometer with CDCl₃ solutions and Me₄Si as the internal standard. For GC analyses, 6-ft columns of 8% Carbowax 1540 and 8% SF-96 on Anakrom ABS were used on a Carle GC-8700. Glassware was oven dried and cooled in a desiccator where appropriate. All reactions of deuterated compounds were carried out under a N₂ atmosphere. Benzoyl chloride was distilled under N₂; hexane and triethylamine were distilled from Na under N₂ before use.

Synthesis of Methyl Acetoacetate- $2^{-2}H_2$ (4- $^{2}H_2$). Methyl acetoacetate (0.487 mol, Aldrich, 99+%) was added dropwise to a stirred slurry of NaH (0.583 mol) in Et₂O (200 mL) over a 45-min period. Et₂O was added as necessary for efficient stirring. After H₂ evolution ceased (1.5 h), 10 mL of D₂O (99.8% D) was added and the stirring continued for 40 min. A solution of D₂SO₄ (98%, 12 mL) in D₂O (20 mL) was added dropwise over a 1-h period; additional D₂SO₄ was used to bring the pH to 7. The ether solution was decanted and evaporated under vacuum. Vacuum distillation at 2.6 kPa gave a 60-80% yield of $4^{-2}H_2$. NMR integration showed 80-90% deuteration at C-2. The $4^{-2}H_2$ product after a second exchange reaction had 97% deuterium at C-2.

^{(18) (}a) Halpern, J.; Okamoto, T.; Zakhariev, A. J. Mol. Catal. 1976, 2, 65–68. (b) Collman, J. P.; Hegedus, L. S. "Principles and Applications of Organotransition Metal Chemistry"; University Science Books: Mill Valley, CA, 1980; pp 333–338.

^{(19) (}a) Chan, A. S. C.; Halpern, J. J. Am. Chem. Soc. 1980, 102,
838-840. (b) Brown, J. M.; Chaloner, P. A. J. Chem. Soc., Chem. Commun. 1980, 344-346. (c) Brown, J. M.; Parker, D. J. Org. Chem. 1982, 47, 2722-2730.

^{(20) (}a) Jardine, F. H.; Osborn, J. A.; Wilkinson, G. J. Chem. Soc. A 1967, 1574-1578. (b) Brown, J. M.; Parker, D. Organometallics 1982, 1, 950-956.

Synthesis of Methyl (Z)- and (E)-3-(Benzoyloxy)-2butenoate (2).⁸ A solution of 4 (11.0 g, 0.095 mol), triethylamine (12.3 g, 0.12 mol, Aldrich, 99%), and 50 mL hexane (Mallincrodt, AR) was cooled to 0 °C. Benzoyl chloride (16.9 g, 0.12 mol, Aldrich, 99+%) was added dropwise over a 40-min period to the stirred solution. After 1.5 h, the reaction was stirred at 25 °C for an additional 3 h. Water (50 mL) and Et₂O (50 mL) were added and two layers formed. The separated water layer was extracted again with 50 mL of Et₂O. After washing the combined Et₂O solutions (H₂O, 0.05 M Na₂CO₃, 0.05 M Na₂CO₃/NaCl, saturated NaCl), the Et₂O was filtered, dried (MgSO₄), and removed by evaporation. The crude product was distilled through a Vigreaux column at 3.3 Pa giving a 70% yield of 2; yields ranged over 70-90%. NMR integrations showed that the product was 70% E isomer (2b) and 30% Z isomer (2a).

Separation of 2a and 2b was carried out on silicic acid (100 mesh, Mallincrodt) with N₂ pressure with 20 g of silicic acid per gram of alkene. Columns were packed by using hexane and eluted with hexane-Et₂O (95:5). The 2b isomer eluted first and could be followed down the column by using a UV lamp. When 2b reached the bottom of the column, the eluent was changed to 9:1 hexane-Et₂O. Elution of 2a was done with 7:3 hexane-Et₂O. 2a was a white solid, mp 54 °C. For separation of 5 g of 2, 85% recovery of pure 2a and 2b was usual. NMR analysis of 2a showed peaks at δ 2.1 (s, 3 H), 3.5 (s, 3 H), 5.65 (s, 1 H) and 7.5 and 8.0 (m, 5 H); 2b had peaks at δ 2.45 (s, 3 H), 3.65 (s, 3 H), 5.8 (s, 1 H) and 7.5 and 8.0 (m, 5 H).

Synthesis of $2^{-2}H_1$. The usual procedure for synthesis of 2 was employed. Yields of 80–90% were obtained from $4^{-2}H_2$. Even with great care to exclude proton sources, $2^{-2}H_1$ had 10% ¹H at C-2 when starting with $4^{-2}H_2$ having 3% ¹H. Addition of 3 mL of D₂O to the reaction mixture gave $2^{-2}H_1$ with 4% ¹H at C-2. Vacuum distillation of this product caused an additional loss of deuterium content.

Attempted Reduction of 2 with N_2H_2 . Potassium azodicarboxylate was synthesized from azodicarbonamide (Aldrich) by using a 40% KOH solution at 0 °C.²¹ It was stored under N_2 at 0 °C. Reaction of a 3-fold excess of potassium azodicarboxylate with 2b in dry dioxane, with acetic acid/dioxane added dropwise in the usual manner,²¹ gave no formation of 3 (NMR analysis) after 71 h, at which time the brilliant yellow color of potassium azodicarboxylate was gone.

Reduction of 2a with D₂/**Rh**(**PPh**₃)₃**Cl** (1). Nitrogen (Airco, 99.999%) was bubbled through 50 mL of benzene (Mallincrodt, thiophene free) for 20 minutes. Under a N₂ atmosphere the deoxygenated benzene, along with **2a** (3.0 g, 0.014 mol) and 1 (0.4 g, 8.6×10^{-4} mol, Aldrich), was sealed into a 300-mL Parr 452 HC high-pressure reaction vessel. The reaction vessel was charged with D₂ (3.4 atm, MG Scientific Gases, 99.5% D), the gas vented, and the vessel recharged with D₂ (10.2 atm). The reaction was run for 24 h at 40 °C. The crude reaction mixture was a clear, golden liquid. After evaporation of the solvent, petroleum ether (60 mL, bp 30–60 °C, Baker, AR) was added; 1 was removed by

suction filtration and the petroleum ether by evaporation. NMR analysis of the crude product showed that the reduction was complete and indicated 5.6% ¹H at C-2 and no deuterium at C-4.

The crude product (2.7 g) was chromatographed on silicic acid (40 g, Mallincrodt, 100 mesh) in the usual way with hexane-Et₂O (95:5). A 1.97-g yield (73%) of methyl (R,R)- and (S,S)-3-(benzoyloxy)[2,3-²H₂]butanoate (**3a**) was recovered as a faintly yellow liquid. NMR analysis of **3a** showed peaks at δ 1.4 (s, 3 H), 2.77 (s, 1 H), 3.65 (s, 3 H) and 7.4 and 8.0 (m, 5 H). Anal. Calcd for C₁₂H₁₄O₄: C, 64.85; H, 6.35. Found: C, 64.82; H, 6.39.

Reduction of 2b with D₂/1. The same procedure was followed as above except that complete reduction occurred only after 5 days. The methyl (R,S)- and (S,R)-3-(benzoyloxy)[2,3-²H₂]butanoate (**3b**) product had 7.8% ¹H at C-2 and no deuterium at C-4. The proton decoupled ²H NMR spectrum of **3b** at 46 MHz showed only two signals (δ 2.77 and 5.50) of approximately equal area, corresponding to deuterium at C-2 and C-3. The NMR spectrum of **3b** was the same as that of **3a** except the C-2 proton was at δ 2.62.

Reduction of 2- ${}^{2}H_{1}$ with $H_{2}/1$. The same procedures were used as above except that H_{2} (3.9 atm) was the reductant and benzene-ethanol (1:1) was the solvent. The reaction was run at 50 °C in a Parr 3910 hydrogenation apparatus and produced a deep rust-colored liquid. 2a- ${}^{2}H_{1}$ was reduced in 2 days, whereas reduction of 2b- ${}^{2}H_{1}$ was complete only after 15 days. Yields of crude products were 90% or greater.

Synthesis and Reduction of tert-Butyl (Z)- and (E)-3-Acetoxy-2-butenoate (11). The same general procedures used in the synthesis of 2 were employed. Acetyl chloride (15.0 g, 0.19 mol) was added dropwise over 60 min to the hexane solution of tert-butyl acetoacetate (15.0 g, 0.095 mol, Aldrich, vacuum distilled under N₂) and triethylamine. Only 60% reaction had occurred within the usual reaction time. Distillation of the crude product gave 6.8 g (60% yield) of 11, bp 60 °C (5.3 Pa). NMR analysis indicated 55% of the E isomer and 45% Z isomer.

Chromatography of 4.5 g of 11 with silicic acid (100 g) and elution with hexane, replaced later with hexane– Et_2O (95:5, 9:1), gave 3.4 g of pure alkenes. NMR analysis showed the following peaks. *E* isomer: δ 1.45 (s, 9 H), 2.1 (s, 3 H), 2.25 (s, 3 H) and 5.5 (s, 1 H). *Z* isomer: δ 1.4 (s, 9 H), 1.9 (s, 3 H), 2.15 (s, 3 H) and 5.4 (s, 1 H).

Reduction of (*E*)-11 (1.98 g) with $D_2/1$ under the usual conditions gave (*R*,*S*)- and (*S*,*R*)-tert-butyl 3-acetoxy[2,3-²H₂]butanoate (1.62 g, 81% yield). NMR analysis showed peaks at δ 1.28 (s, 3 H), 1.44 (s, 9 H), 2.0 (s, 3 H) and 2.39 (t, 1 H). Anal. Calcd for $C_{10}H_{18}O_4$: C, 59.39; H, 8.97. Found: C, 59.56; H, 8.86.

Acknowledgment. We are grateful to the Research Corporation and to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for the support of this research. A summer NSF-URP stipend (to TFF) is also acknowledged. We thank Dr. Stephen B. Philson and the University of Minnesota for the 300-MHz NMR spectra and Dr. Lynn Buffington for assistance in their analysis.

⁽²¹⁾ Hamersma, J. W.; Snyder, E. I. J. Org. Chem. 1965, 30, 3985-3988.