

Polyhedron 20 (2001) 2711-2720

Scandium, yttrium and lanthanum nitrate complexes of tertiary arsine oxides: synthesis and multinuclear spectroscopic studies. X-ray structures of [M(Me₃AsO)₆](NO₃)₃ (M = Sc or Y), [Sc(Ph₃AsO)₃(NO₃)₂]NO₃, [M"(Ph₃AsO)₄(NO₃)₂]NO₃ (M" = Y or La) and [La(Ph₃AsO)₂(EtOH)(NO₃)₃]

William Levason *, Bhavesh Patel, Michael C. Popham, Gillian Reid, Michael Webster

Department of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK

Received 30 May 2001; accepted 29 June 2001

Abstract

The reaction of Ph₃AsO with Sc(NO₃)₃·5H₂O, Y(NO₃)₃·6H₂O or La(NO₃)₃·6H₂O in acetone gave [Sc(Ph₃AsO)₂(NO₃)₃], $[Y(Ph_3AsO)_4(NO_3)_2]NO_3,$ $[La(Ph_3AsO)_4(NO_3)_2]NO_3,$ and $[La(Ph_3AsO)_3(NO_3)_3],$ whilst from ethanol solution [Sc(Ph₃AsO)₃(NO₃)₂]NO₃, [Y(Ph₃AsO)₂(EtOH)(NO₃)₃] and [La(Ph₃AsO)₂(EtOH)(NO₃)₃] were produced. Similar reactions using Me_3AsO produced $[M(Me_3AsO)_6](NO_3)_3$ (M = Sc, Y or La) and $[La(Me_3AsO)_2(H_2O)(NO_3)_3]$. All complexes were characterised by analysis, IR and ¹H, ⁴⁵Sc or ⁸⁹Y NMR spectroscopy, and conductance measurements. The solution speciation and interconversions of the Sc and Y complexes have been probed by ⁴⁵Sc and ⁸⁹Y NMR spectroscopy. X-Ray crystal structures are reported for the 6-coordinate $[M(Me_3AsO)_6](NO_3)_3$ (M = Sc or Y), seven-coordinate $[Sc(Ph_3AsO)_3(NO_3)_2]NO_3$, eight-coordinate $[M''(Ph_3AsO)_4(NO_3)_2]NO_3$ (M'' = Y or La), and nine-coordinate $[La(Ph_3AsO)_2(EtOH)(NO_3)_3]$. (2001 Elsevier Science Ltd. All rights reserved.

Keywords: Scandium; Yttrium; Lanthanum; NMR spectroscopy; X-ray structures

1. Introduction

Compared to other d-block metals, the coordination chemistries of scandium and yttrium remain little explored. The only accessible oxidation state in solution, the d⁰ M(III), form labile complexes and lack both magnetic and d-d UV-Vis spectroscopic probes. However, both metals are suitable for NMR studies, being monoisotopic (⁴⁵Sc and ⁸⁹Y) and diamagnetic in the M(III) oxidation state. Scandium-45 is quadrupolar (I = 7/2) but with only a moderate quadrupole moment -0.22×10^{-28} m², and is one of the most sensitive nuclei in the periodic table (D_c (receptivity relative to ¹³C) = 1700), whilst ⁸⁹Y has I = 1/2 and moderate sensi-

tivity $(D_c = 0.67)$, but has a low absolute frequency $(\Xi = 4.92 \text{ MHz})$ and very long relaxation times. We have recently described the characterisation of scandium(III) and yttrium(III) nitrate complexes of a range of phosphine oxides, [1] using a combination of multinuclear NMR (¹H, ³¹P{¹H}, ⁴⁵Sc or ⁸⁹Y) and X-ray crystallography. In a related work, the synthesis and structures of Ln(Ph₃PO)₄(NO₃)₃ for the lanthanides have been examined [2]. Here, we extend the work to tertiary arsine oxide (Me₃AsO and Ph₃AsO) complexes and demonstrate that ⁴⁵Sc or ⁸⁹Y NMR spectroscopy can be used to probe the solution behaviour of these two elements, even without the support of ³¹P NMR as used for the phosphine oxide analogues. Apart from some early exploratory synthesis of lanthanide nitrate complexes of Ph₃AsO [3], nothing is known about these compounds, and no examples with Sc, Y or La have been structurally characterised.

^{*} Corresponding author. Tel.: +44-2380-595-000; fax: +44-2380-593-782.

E-mail address: wxl@soton.ac.uk (W. Levason).

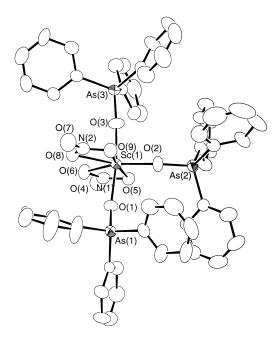


Fig. 1. The structure of the cation in $[Sc(Ph_3AsO)_3(NO_3)_2]NO_3 H_2O$ showing the atom numbering scheme. Thermal ellipsoids are drawn at the 30% probability level.

2. Results and discussion

2.1. Triphenylarsine oxide complexes: scandium

The reaction of $Sc(NO_3)_3 \cdot 5H_2O$ with Ph₃AsO in a 1:3 mol ratio in ethanol produced colourless crystals of $[Sc(Ph_3AsO)_3(NO_3)_2]NO_3$. The structure of the cation of $[Sc(Ph_3AsO)_3(NO_3)_2]NO_3 \cdot H_2O$ is shown in Fig. 1 and selected bond lengths and angles are in Table 1. The Sc is seven-coordinate with two bidentate NO₃ groups and if as commonly done (and used in later descriptions), the coordinated NO₃ are each replaced conceptually with a monodentate group the geometry at Sc is based on a trigonal bipyramid with equatorial NO₃ groups. The IR spectrum shows a very broad v(AsO) stretch at 899 cm⁻¹, which compares with 880

Table 1					
Selected bond	lengths (Å) and	bond angles	s (°) for [Sc(Ph ₂ AsO) ₂ (NO ₂) ₂]NC	O ₂ ·H ₂ O

 cm^{-1} in the 'free' ligand. Coordination shifts in arsine oxides are often small (high or low frequency), attributed to a combination of factors including coupling with the M-O vibrations and reduced As=O multiple bond character [4–6]. A weak sharp band at 834 cm⁻¹ is attributable to the v_2 vibration of the ionic nitrate ion [1]. The complex is a 1:1 electrolyte in CH₂Cl₂ solution,1 and addition of excess Ph₃AsO produced no change in conductance, indicating that displacement of further nitrate groups by Ph₃AsO does not occur. This was confirmed by ⁴⁵Sc NMR spectroscopy; the $[Sc(Ph_3AsO)_3(NO_3)_2]^+$ shows a broad line at δ 31.9, which is not changed in the presence of excess ligand. The stoichiometry can be compared to that in the corresponding Ph₃PO/Sc(NO₃)₃ system where the only complex present [1] is the eight-coordinate [Sc(Ph₃PO)₂- $(NO_3)_3$]. A number of reactions of Sc $(NO_3)_3$ ·5H₂O and Ph₃AsO in ethanol or acetone with lower Ph₃AsO:Sc ratios were carried out, and ⁴⁵Sc NMR spectroscopy was used to identify any complexes. The [Sc(Ph₃AsO)₃-(NO₃)₂]NO₃ was usually present, but often a second complex with δ ⁽⁴⁵Sc) at 14.0 was also identified, which on addition of Ph₃AsO was completely converted into $[Sc(Ph_3AsO)_3(NO_3)_2]NO_3$. From the reaction of a 1:1 ratio of Sc(NO₃)₃·5H₂O:Ph₃AsO in acetone, followed by recrystallisation from CH₂Cl₂, we obtained an impure sample (contaminated with some $Sc(NO_3)_3 \cdot nH_2O$) of this second complex, which is identified as $[Sc(Ph_3AsO)_2(NO_3)_3].$

2.2. Yttrium

The reaction of $Y(NO_3)_3$ ·6H₂O with Ph₃AsO in ethanol in a 1:1 mol ratio formed [Y(Ph₃AsO)₂(EtOH)-(NO₃)₃]. The complex exhibits v(AsO) at 933 and 910 cm⁻¹ in the IR spectrum, and the ¹H NMR spectrum confirms the presence of EtOH. In solution in CH₂Cl₂ the complex is a non-electrolyte. The complex has not

 $^{^{1}}$ As before (Ref. [1]) the same solvent (CH₂Cl₂) was used for both NMR and conductance studies for consistency.

	s (A) and bond angles () 101 [Se(1 II ₃ /130) ₃ (100 ₃)	₂]10 ₃ 11 ₂ 0		
Bond lengths					
Sc(1) - O(1)	2.030(4)	Sc(1) - O(5)	2.250(5)	Sc(1)–O(2)	1.999(4)
Sc(1)–O(6)	2.256(5)	Sc(1) - O(3)	1.996(4)	Sc(1)–O(8)	2.267(5)
Sc(1)–O(9)	2.251(5)	As(1)-O(1)	1.669(4)	As(2)–O(2)	1.665(4)
As(3)–O(3)	1.659(4)	As-C	1.877(7)-1.925(8)	N–O _c	1.258(7)-1.287(8) a
N–O _t	1.222(8), 1.217(8) ^a				
Bond angles					
O(1)-Sc(1)-O(2)	93.4(2)	O(5)-Sc(1)-O(6)	56.2(2)	O(1)-Sc(1)-O(3)	171.4(2)
O(8) - Sc(1) - O(9)	56.8(2)	O(2)-Sc(1)-O(3)	94.2(2)	Sc(1)-O(1)-As(1)	149.2(3)
Sc(1)-O(2)-As(2)	153.1(3)	Sc(1)-O(3)-As(3)	176.4(3)		
O–As–C	106.1(3)-113.1(3)	C–As–C	106.6(3)-112.4(3)		

^a O_c and O_t refer to coordinated and terminal O atoms of chelated NO₃ groups.

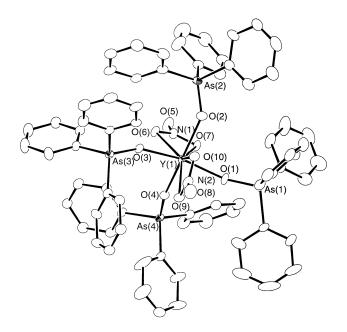


Fig. 2. The structure of the cation in $[Y(Ph_3AsO)_4(NO_3)_2]NO_3$ · $1/2H_2O$ showing the atom numbering scheme. Thermal ellipsoids are drawn at the 30% probability level.

been obtained in crystalline form for an X-ray study, but there seems little doubt that it contains a nine-coordinate metal centre like [Y(Ph₃PO)₂(EtOH)(NO₃)₃] [1] and the lanthanum analogue (below). The complex was poorly soluble in CH₂Cl₂ which hindered study by ⁸⁹Y NMR spectroscopy. No ⁸⁹Y resonance was evident at 300 K, but after long accumulations at 200 K a feature at δ 0.5 was observed along with a sharper feature at δ 21.0, the latter attributable to $[Y(Ph_3AsO)_4(NO_3)_2]NO_3$. Addition of Ph₃AsO to this solution caused immediate loss of the δ 0.5 resonance and enhancement of the δ 21.0, showing ready conversion to the tetrakis complex. From acetone solutions of Y(NO₃)₃·6H₂O and Ph₃AsO in mol ratios 1: 3-6 the product was [Y(Ph₃AsO)₄- $(NO_3)_2$]NO₃·Me₂CO. Attempts to grow single crystals yielded [Y(Ph₃AsO)₄(NO₃)₂]NO₃·1/2H₂O the structure of which has an eight-coordinate Y atom made up from four arsine oxide ligands approximately in the equatorial plane and two bidentate NO₃ groups (Fig. 2, Table 2). The planes of the two NO_3 ligands are approximately perpendicular. A similar coordination geometry is found in $[M(R_3PO)_4(NO_3)_2]^+$ (M = Sc [1] (R₃ = Ph_2Me) or Lu [2] ($R_3 = Ph_3$)). The presence of lattice acetone was confirmed by the IR and ¹H NMR spectra, and the former also showed evidence for an ionic nitrate group ($v_2 = 832$ cm⁻¹). The complex shows no ⁸⁹Y NMR resonance in CH₂Cl₂ solution at 300 K, but on cooling < 250 K a sharp resonance appears at δ 21.0, showing that like the corresponding phosphine oxide systems, the complex is undergoing fast dissociative exchange at ambient temperatures, the exchange rate slowing on cooling. The ⁸⁹Y NMR spectrum is unchanged by addition of excess Ph₃AsO to the solu-

tion, as is the 1:1 electrolyte behaviour, demonstrating that no complexes with a higher Ph₃AsO:Y ratio form. The corresponding $[Y(Ph_3PO)_4(NO_3)_2]NO_3$ is known [1], but in contrast to the present complex is only isolated from ice-cold ethanol solutions containing excess Ph₃PO, and in chlorocarbon solutions is partially decomposed into [Y(Ph₃PO)₃(NO₃)₃], identified by ⁸⁹Y NMR spectroscopy. In the Y(NO₃)₃/Ph₃PO system it is the tris(Ph₃PO) complex, [Y(Ph₃PO)₃(NO₃)₃] which is easiest to isolate [1], but although $[Y(Ph_3AsO)_3(NO_3)_3]$ has been mentioned previously [3], we have been unable to isolate it. Even from 1:1 ratios of $Y(NO_3)_3 \cdot 6H_2O$: Ph₃AsO in acetone, slow crystallisation produced only the tetrakis(Ph₃AsO) complex. Evaporation to dryness of a 1:1 mixture of the constituents in acetone followed by extraction into CH₂Cl₂ gave a mixture including $Y(NO_3)_3 \cdot nH_2O$ and $[Y(Ph_3AsO)_4(NO_3)_2]NO_3$, and ⁸⁹Y NMR spectroscopy identified a third species with δ 18 which may be $[Y(Ph_3AsO)_3(NO_3)_3]$, since addition of Ph₃AsO immediately converts this species to the tetrakis complex, but attempted separation results in decomposition.

2.3. Lanthanum

The reaction of La(NO₃)₃·6H₂O with Ph₃AsO in boiling ethanol (1:2 mol ratio) and in acetone in 1:1.5 and 1:6 ratios led to [La(Ph₃AsO)₂(EtOH)(NO₃)₃], $[La(Ph_3AsO)_3(NO_3)_3]$ and $[La(Ph_3AsO)_4(NO_3)_2]NO_3$, respectively, the first and third of which were identified by single crystal X-ray studies. The [La(Ph₃AsO)₂-(EtOH)(NO₃)₃] contains nine-coordinate La with three bidentate NO₃ groups and may be described as 'meroctahedral' (Fig. 3, Table 3). This complex is isomorphous with the corresponding Sm [7] compound and several triphenylphosphine oxide complexes (Sm [7], Eu, Nd and Ce [8]). In $[La(Ph_3AsO)_4(NO_3)_2]NO_3$ 2Me₂CO the cation is structurally similar to the yttrium compound above with eight-coordinate La in the 'trans-octahedral' geometry (Fig. 4, Table 4). There are two acetone molecules in the crystal formula whereas the chemical analysis of the bulk material gives a better fit for one. The corresponding triphenvlphosphine oxide cationic species has been reported [9] although with a different counterion. The [La(Ph₃AsO)₄(NO₃)₂]NO₃ appears to retain this structure in solution in CH₂Cl₂ where it is a 1:1 electrolyte and the conductance is unchanged by addition of excess Ph₃AsO. In contrast $[La(Ph_3PO)_4(NO_3)_3]$ contains nine-coordinate lanthanum produced by four Ph₃PO, two bidentate and one monodentate NO₃ groups, but is completely decomposed in solution into [La(Ph₃PO)₃(NO₃)₃] and Ph_3PO on the basis of ${}^{31}P{}^{1}H$ NMR studies [2]. Unfortunately the La(NO₃)₃/Ph₃AsO system is not suited to NMR studies, in that the ¹H and ¹³C NMR spectra were insensitive to coordination of the Ph₃AsO and attempts to record ¹³⁹La NMR spectra were unsuccess-

Table 2

Selected bond lengths (Å) and bond angles (°) for $[Y(Ph_3AsO)_4(NO_3)_2]NO_3 \cdot 1/2H_2O$

2.212(4)	Y(1)–O(6)	2.458(4)	Y(1)-O(2)	2.233(4)
2.506(4)	Y(1)-O(3)	2.228(4)	Y(1)-O(9)	2.494(4)
2.228(4)	Y(1)-O(10)	2.462(4)	As(1) - O(1)	1.656(4)
1.660(4)	As(2)–O(2)	1.654(4)	As(4)–O(4)	1.655(4)
1.901(7)-1.922(6)				
88.5(2)	O(1)-Y(1)-O(2)	90.4(2)	O(2)-Y(1)-O(3)	97.1(2)
51.5(1)	O(6)-Y(1)-O(7)	51.3(1)	Y(1)-O(3)-As(3)	156.1(2)
147.3(3)	Y(1) - O(1) - As(1)	164.5(3)		
106.8(3)-113.0(2)	Y(1)-O(4)-As(4)	160.6(2)		
107.0(3)-111.9(3)	O(3)-Y(1)-O(4)	93.3(2)		
	2.506(4) 2.228(4) 1.660(4) 1.901(7)–1.922(6) 88.5(2) 51.5(1) 147.3(3) 106.8(3)–113.0(2)	$\begin{array}{cccc} 2.506(4) & Y(1)-O(3) \\ 2.228(4) & Y(1)-O(10) \\ 1.660(4) & As(2)-O(2) \\ 1.901(7)-1.922(6) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ful. The combination of labile systems with low symmetry at La, and the quadrupolar ¹³⁹La nucleus (I = 7/2, 99.9%, $\Xi = 14.1$ MHz, $Q = 0.2 \times 10^{-28}$ m²) produces fast relaxation and unobservably broad resonances.

2.4. Trimethylarsine oxide complexes

The reactions of Me₃AsO with the hydrated nitrates of Sc, Y or La in a $\geq 6:1$ mol ratio in cold ethanol produced $[M(Me_3AsO)_6](NO_3)_3$ (M = Sc, Y or La). The complexes are insoluble in chlorocarbons, ethanol or acetone, but dissolve in nitromethane with partial decomposition. The CsI disc IR spectra of all three complexes are very similar and in addition to strong and broad features in the range 930-860 cm⁻¹ which can be assigned to methyl rocking modes and the v(AsO) of the ligand, there are strong features at 1360(br) (v_3) and 835 (v_2) cm⁻¹ attributable to ionic nitrate groups. The structures of $[M(Me_3AsO)_6](NO_3)_3$ (M = Sc or Y) were established by X-ray studies and the very similar IR spectrum is strong evidence that the La complex also has a six-coordinate metal centre. The [M(Me₃- AsO_{6}^{3+} represent the first structurally characterised homoleptic examples in our studies of coordination by arsine or phosphine oxides (Figs. 5 and 6, Table 5). The Y-O distances are similar to the triphenylarsine oxide complexes but the Y-O-As(Me₃) angles (130.0(5)-149.1(6)°) are smaller than all but one of the M-O-As(Ph₃) angles reported here. The Sc complex conforms to the same pattern. Crystal growing attempts using [La(Me₃AsO)₆](NO₃)₃ gave a few crystals identified as the decomposition product [La(Me₃AsO)₄-(NO₃)₃] containing nine-coordinate La with two bidentate (η^2) NO₃ and one monodentate (η^1) NO₃ groups but the data were of poor quality and the structure did not refine satisfactorily.² In solution in nitromethane

the [M(Me₃AsO)₆](NO₃)₃ complexes partially decompose having molar conductances $(10^{-3} \text{ mol dm}^{-3} \text{ solu-}$ tions) in the range typical of 2:1 electrolytes, which increase significantly (to values indicative of 3:1 electrolytes) on addition of excess Me₃AsO. The ⁴⁵Sc NMR spectrum of [Sc(Me₃AsO)₆](NO₃)₃ in MeNO₂ was a very broad resonance at approximately δ 58 on which was superimposed a sharp feature at δ 56.0. Addition of excess Me₃AsO completely converted the species to that with δ 56.0, the sharp resonance showing the quadrupolar ⁴⁵Sc nucleus was in a cubic environment, i.e. $[Sc(Me_3AsO)_6]^{3+}$; the broader resonance and lower conductance indicating that $[Sc(Me_3AsO)_{6-n}]$ $(NO_3)_n$ ⁽³⁻ⁿ⁾⁺ form in the absence of excess Me₃AsO, very similar behaviour to the Sc(NO₃)₃/Me₃PO system [1]. The $[Y(Me_3AsO)_6](NO_3)_3$ behaves similarly with a sharp ⁸⁹Y NMR resonance (at 200 K in EtNO₂ solution)³ at δ 133 observed in the presence of excess ligand

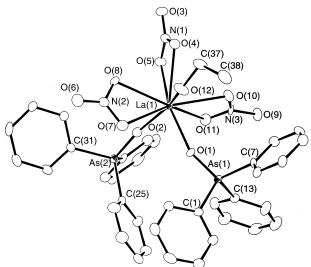


Fig. 3. The structure of $[La(Ph_3AsO)_2(EtOH)(NO_3)_3]$ showing the atom numbering scheme. Thermal ellipsoids are drawn at the 30% probability level.

² [La(Me₃AsO)₄(NO₃)₃] crystal data: monoclinic, a = 10.278(3), b = 12.034(4), c = 12.030(2) Å, $\beta = 97.42(2)^{\circ}$, U = 1475.4(6) Å³. Space group P2₁ (no. 4), Z = 2, T = 150 K. Crystals grown from La(Me₃AsO)₆(NO₃)₃ complex by vapour diffusion (MeNO₂/Et₂O). R1 = 0.14 for 2381 $F_{0} > 4\sigma(F_{0})$ and 237 parameters.

 $^{^3}$ MeNO₂ (m.p. -29 °C) is unsuitable for low temperature studies and was replaced by EtNO₂ (m.p. -95 °C), which is unlikely to change the chemistry.

Table 3 Selected bond lengths (Å) and bond angles (°) for [La(Ph ₃ AsO) ₂ (EtOH)(NO ₃) ₃]	
Band lengths	

Bond lengths					
La(1)–O(1)	2.347(7)	La(1)–O(8)	2.592(7)	La(1)–O(2)	2.324(8)
La(1)-O(10)	2.581(7)	La(1)–O(4)	2.640(7)	La(1)–O(11)	2.615(8)
La(1)–O(5)	2.608(8)	La(1)–O(12)	2.552(7)	La(1)–O(7)	2.664(7)
As–C	1.896(12)-1.932(9)	As(1)–O(1)	1.670(7)	As(2)–O(2)	1.671(7)
Bond angles					
O(1)-La(1)-O(2)	92.0(3)	O(1)-La(1)-O(12)	80.1(3)	O(4)-La(1)-O(5)	48.4(2)
O(10)-La(1)-O(11)	49.5(3)	O(7)–La(1)–O(8)	48.7(2)	O(2)-La(1)-O(12)	149.5(3)
La(1)-O(1)-As(1)	159.2(4)	La(1)-O(2)-As(2)	164.0(5)		
O–As–C	107.5(4)-114.6(4)	C–As–C	106.9(4)-110.6(5)		

and assignable to $[Y(Me_3AsO)_6]^{3+}$, whereas in the absence of added ligand, a broader feature at δ 112 is present probably due to exchanging $[Y(Me_3AsO)_{6-}]$ $n(NO_3)_n$ ⁽³⁻ⁿ⁾⁺ species. The conductance behaviour of [La(Me₃AsO)₆](NO₃)₃ in MeNO₂ with added Me₃AsO was similar to that of the lighter analogues, although even in the presence of excess Me₃AsO we were unable to observe a ¹³⁹La NMR resonance, due either to fast exchange or to the presence of lower symmetry species in solution, either of which would promote fast quadrupolar relaxation. The $[La(Me_3AsO)_4(NO_3)_3]$ complex has not been prepared in bulk, but from La(NO₃)₃·6H₂O and Me₃AsO in a 1:2 molar ratio in boiling ethanol, we obtained a species with a 1:2 La:Me₃AsO stoichiometry, which analysis and the IR and ¹H NMR spectra indicated was [La(Me₃AsO)₂- $(H_2O)(NO_3)_3$], presumably containing nine-coordinate lanthanum. The presence of ligated H₂O rather than EtOH was unexpected, but has been seen before in $[Y(Me_3PO)_2(H_2O)(NO_3)_3]$ [1].

2.5. Comparison of R₃PO and R₃AsO

The data in the present paper and that in our previous study [1,2] of R_3PO (R = Me or Ph) complexes of these d⁰ metals allow comparison of the ligating properties of the pnictogen oxides. Firstly it is apparent from the stoichiometry of the isolated complexes and from the solution speciation data from NMR studies, that R₃AsO competes with nitrate more successfully for these oxophilic metals than does R_3PO . Consider for example [Sc(Ph₃PO)₂(NO₃)₃] versus [Sc(Ph₃AsO)₃- $(NO_3)_2$ NO₃ as the preferred complexes, or the great preference for $[Y(Ph_3AsO)_4(NO_3)_2]NO_3$ (and our failure to isolate a tris complex) whereas $[Y(Ph_3PO)_3(NO_3)_3]$ is favoured in the Ph₃PO system and [Y(Ph₃PO)₄(NO₃)₂]-NO₃ isolated only with a large excess of ligand. Similarly with Me₃AsO, yttrium forms [Y(Me₃AsO)₆](NO₃)₃ whereas $[Y(Me_3PO)_4(NO_3)_2]NO_3$ is the species with the highest Me₃PO/Y ratio in the phosphine oxide system. On electronic grounds the higher dipole moments of the arsine oxides compared to the phosphine oxides (Ph₃PO, 4.51; Ph₃AsO, 5.50, Me₃PO, 4.39, Me₃AsO,

5.12 D [10,11]) should result in better donation from the electron richer oxygen atoms of the former. In an attempt to relate these observations to the observed geometry we have examined Ln–O distances in four pairs of compounds where both the phosphine- and arsine oxides are known $[SmL_2(EtOH)(NO_3)_3]$; $[ML_3(NO_3)_3]$ (M = Ce or Eu); $[LaL_4(NO_3)_2]^+$. L = Ph₃XO (X = P or As)] [7,9,12,13]. The species are analogous although not always crystallographically isomorphous. The pair $[La(Ph_3XO)_4(NO_3)_2]^+$ (X = P or As) provides the clearest single example but is supported by the others. In general it appears that the M–O(P) is larger than M–O(As) for M = Sc, Y or Ln species, consistent with stronger binding in the arsine oxide complexes.

The crystal structures of triphenylarsine oxide [14] and a monohydrate [15] have been reported and an electron diffraction study of trimethylarsine oxide is

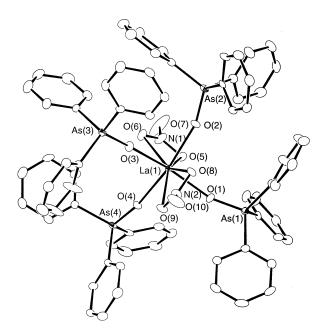


Fig. 4. The structure of the cation in $[La(Ph_3AsO)_4(NO_3)_2]$ -NO₃·2Me₂CO showing the atom numbering scheme. Thermal ellipsoids are drawn at the 30% probability level.

2716 Table 4

Selected bond lengths (A) and bond angles (°) for $[La(Ph_3AsO)_4(NO_3)_2]NO_3 \cdot 2Me_2CO$

Bond lengths					
La(1) - O(1)	2.361(5)	La(1)–O(5)	2.635(5)	La(1)–O(2)	2.343(4)
La(1)–O(6)	2.641(5)	La(1)–O(3)	2.340(5)	La(1)–O(8)	2.651(5)
La(1)–O(4)	2.347(4)	La(1)–O(9)	2.656(5)	As(1)–O(1)	1.660(5)
As(3)–O(3)	1.658(5)	As(2)–O(2)	1.661(4)	As(4)–O(4)	1.660(4)
As–C	1.907(7)-1.921(7)	N–O _t	1.206(8), 1.218(8)	N–O _c	1.250(8)-1.270(7)
Bond angles					
O(1)-La(1)-O(2)	94.9(2)	La(1)-O(1)-As(1)	160.0(3)	O(1)-La(1)-O(4)	89.3(2)
La(1)-O(2)-As(2)	162.8(3)	O(2)-La(1)-O(3)	89.8(2)	La(1)-O(3)-As(3)	175.7(3)
O(3)-La(1)-O(4)	92.3(2)	La(1)-O(4)-As(4)	167.5(3)	O(5)-La(1)-O(6)	48.1(2)
O(8)-La(1)-O(9)	48.1(1)	O-As-C	107.0(3)-112.8(3)		

available [16]. As expected there are no major geometry changes on complexation. The steric requirements of the arsine oxide ligands and the phosphorus analogues are complex with considerable variation in the M–O–P/ As angle. From our (small) sample it appears that the trimethyl derivatives of both pnictogens have smaller angles (Y–O–As 130–149°; Y–O–P 140–150°) than the triphenyl derivatives (approximately 150° to nearly linear).

3. Conclusions

The results represent the first study of the solution behaviour of the arsine oxide ligands with Sc(III), Y(III) and Ln(III) and including the first series of crystallographic studies. We have shown that R_3AsO has a greater affinity for these metals compared to R_3PO resulting in higher ratio $R_3AsO:M$ species being formed.

4. Experimental

Multinuclear NMR spectra were obtained on a Bruker DPX400 at 97.16 MHz (45 Sc), 19.60 MHz (89 Y), or 100.6 MHz (13 C) using TEMPO as a relaxation agent for the 89 Y systems, and referenced as described previously [1]. Other physical measurements were made as before [1]. Ph₃AsO, Y(NO₃)₃·6H₂O, La(NO₃)₃·6H₂O (Aldrich) and Sc(NO₃)₃·5H₂O (Strem) were used as received. Me₃AsO was made by H₂O₂ oxidation of Me₃As in diethyl ether, and purified by sublimation in vacuo [17]. Me₃AsO ¹H NMR (300 K, CDCl₃): δ 1.68(s), ¹³C{¹H} NMR (300 K, CDCl₃): 16.7(s).

4.1. [Y(Ph₃AsO)₂(EtOH)(NO₃)₃]

A solution of $Y(NO_3)_3$ ·6H₂O (0.38 g, 1.0 mmol) in boiling ethanol (10 cm³) was added to a solution of Ph₃AsO (0.64 g, 2.0 mmol) in ethanol (15 cm³), the solution allowed to cool, and then refrigerated for 24 h. The white solid was filtered off and dried in vacuo. Yield 0.34 g, 37%. *Anal.* Found: C, 46.8; H, 3.9; N, 4.3. Calc. for $C_{38}H_{36}As_2N_3O_{12}Y$: C, 47.3; H, 3.8; N, 4.4%. IR (CsI disc, cm⁻¹): 3420br, 3065w, 2989w, 1494s, 1463s, 1441s, 1323s, 1090s, 1045m, 1036m, 999m, 933s, 910s, 877m, 818m, 745s, 691s, 479s, 459m, 373s, 359s. ¹H NMR (300 K, CDCl₃): 7.4–7.6(m), 3.7(q, *J* = 7 Hz), 1.17(t, *J* = 7 Hz). ⁸⁹Y NMR (300 K, CH₂Cl₂/CDCl₃): not observed (200 K) + 0.5(br), 21.0(w). Λ_M (CH₂Cl₂, 10^{-3} mol dm⁻³) 2 Ω^{-1} cm² mol⁻¹.

4.2. $[Y(Ph_3AsO)_4(NO_3)_2]NO_3 \cdot Me_2CO$

A solution of $Y(NO_3)_3$, $^{\circ}6H_2O$ (0.38 g, 1.0 mmol) in acetone (10 cm³) was added to a solution of Ph₃AsO (0.97 g, 3.0 mmol) in boiling acetone (5 cm³), the solution was allowed to cool, and then refrigerated for 24 h. The white crystals were filtered off and dried in vacuo. Yield 0.58 g, 35%. *Anal.* Found: C, 54.3; H, 3.8;

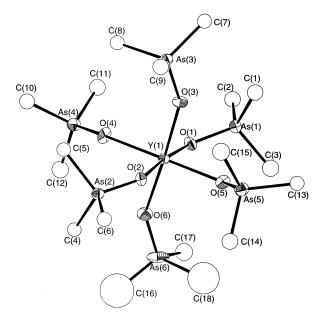


Fig. 5. The structure of the cation in $[Y(Me_3AsO)_6](NO_3)_3$ ·H₂O showing the atom numbering scheme. Thermal ellipsoids are drawn at the 30% probability level.

Fig. 6. The structure of the cation in $[Sc(Me_3AsO)_6](NO_3)_3$ showing the atom numbering scheme. The Sc is on a centre of symmetry. Thermal ellipsoids are drawn at the 30% probability level.

N, 2.8. Calc. for $C_{75}H_{66}As_4N_3O_{14}Y$: C, 55.3; H, 4.1; N, 3.0%. IR (CsI disc, cm⁻¹): 3050w, 1706m, 1465s, 1441s, 1362s, 1314s, 1227w, 1186m, 1163w, 1089m, 1038w, 999w, 914br,s, 832m, 821m, 744s, 692s, 479s, 458s, 357s. ¹H NMR (300 K, CDCl₃): 7.2–7.7 (m), 2.2(s). ⁸⁹Y NMR (200 K, CDCl₃/CH₂Cl₂): +21. Λ_M (CH₂Cl₂, 10^{-3} mol dm⁻³) 28 Ω^{-1} cm² mol⁻¹.

4.3. $[Sc(Ph_3AsO)_3(NO_3)_2]NO_3$

A solution of $Sc(NO_3)_3$ ·5H₂O (0.23 g, 1.0 mmol) in boiling ethanol (10 cm³) was added to a solution of

Ph₃AsO (0.97 g, 3.0 mmol) in ethanol (10 cm³), and stirred for 1 h. The solution was refrigerated for 24 h, and the crystalline solid filtered off, and dried in vacuo. Yield 0.50 g, 42%. *Anal.* Found: C, 53.4; H, 3.7; N, 3.3. Calc. for $C_{54}H_{45}As_3N_3O_{12}Sc:$ C, 54.1; H, 3.8; N, 3.5%. IR (CsI disc, cm⁻¹): 3065w, 1521s, 1485m, 1441s, 1362s, 1298m, 1163w, 1089s, 1026m, 999m, 948w, 899br,s, 832w, 812m, 743s, 691s, 478s, 418m, 368s, 357s. ¹H NMR (300 K, CDCl₃): 7.4–7.8m. ⁴⁵Sc NMR

(300 K, CH₂Cl₂/CDCl₃): 31.9 (W_{1/2}, 5200 Hz). $\Lambda_{\rm M}$ (CH₂Cl₂, 10⁻³ mol dm⁻³) 27 Ω^{-1} cm² mol⁻¹.

4.4. [Sc(Ph₃AsO)₂(NO₃)₃]

A solution of $Sc(NO_3)_3$ ·5H₂O (0.23 g, 1.0 mmol) in warm acetone (10 cm³) was added to a solution of Ph_3AsO (0.32 g, 1.0 mmol) in acetone (10 cm³), when a white solid formed but redissolved. The solution was evaporated to dryness in vacuo, the residue washed with diethyl ether (20 cm³), and then extracted with CH_2Cl_2 (10 cm³) and the solution filtered. The filtrate was evaporated to dryness. Yield: 0.08 g. Not obtained analytically pure, see text. IR (CsI disc, cm^{-1}): 3443br*, 1636m*, 1520m, 1441m, 1357s*, 1186w, 1089m, 1027m, 999m, 898br,s, 834w*, 813m, 743s, 692s, 479m, 413m, 365m, 284m (* attributed to $Sc(NO_3)_3 \cdot nH_2O$ impurity). ¹H NMR (300 K, CDCl₃): 7.4-7.8m. ⁴⁵Sc NMR (300 K, CH₂Cl₂/CDCl₃): 14.0 $(W_{1/2}, 3500 \text{ Hz})$. Λ_{M} (CH₂Cl₂, 10⁻³ mol dm⁻³) 8 Ω^{-1} cm² mol⁻¹.

4.5. [La(Ph₃AsO)₂(EtOH)(NO₃)₃]

A solution of $La(NO_3)_3$ ·6H₂O (0.43 g, 1.0 mmol) in boiling ethanol (20 cm³) was added to a solution of

Table 5

Selected bond lengths (Å) and bond angles (°) for [Y(Me₃AsO)₆](NO₃)₃·H₂O and [Sc(Me₃AsO)₆](NO₃)₃

(a) [Y(Me ₃ AsO) ₆](NO ₃) ₃ ·H ₂ O Bond lengths					
Y(1)-O(1)	2.242(10)	Y(1)-O(4)	2.221(9)	Y(1)–O(2)	2.248(10)
Y(1)-O(5)	2.253(9)	Y(1)-O(3)	2.202(10)	Y(1)-O(6)	2.209(11)
As(n)-O(n)	1.65(1)-1.70(1)	As–C	1.82(4)-2.04(4)		
Bond angles					
Y(1)-O(1)-As(1)	131.3(5)	Y(1)-O(4)-As(4)	142.3(6)	Y(1)-O(2)-As(2)	134.0(5)
Y(1)–O(5)–As(5)	130.0(5)	Y(1)-O(3)-As(3)	149.1(6)	Y(1)-O(6)-As(6)	147.1(6)
O-Y(1)-O (approximately 90°)	86.7(4)-96.3(4)	O–As–C	108.0(6)-113.4(7)		
(b) [Sc(Me ₃ AsO) ₆](NO ₃) ₃ Bond lengths					
Sc(1)-O(1)	2.100(8)	Sc(1) - O(2)	2.064(8)	Sc(1) - O(3)	2.097(8)
As(1) - O(1)	1.662(8)	As(2)-O(2)	1.649(9)	As(3)–O(3)	1.650(8)
As–C	1.86(4)-1.99(2)				
Bond angles					
Sc(1) - O(1) - As(1)	132.6(4)	Sc(1)-O(2)-As(2)	144.3(6)	Sc(1)-O(3)-As(3)	134.3(5)
O-Sc(1)-O (approximately 90°)	88.5(3)-91.5(3)	O–As–C	107.2(6)-112.1(6)		
C-As-C	99(1)-123(2)				

Ph₃AsO (0.64 g, 2.0 mmol) in ethanol (10 cm³), the solution evaporated to 10 cm³, and then refrigerated for 24 h. The white solid was filtered off and dried in vacuo. Yield: 0.56 g, 58%. *Anal.* Found: C, 45.6; H, 3.5; N, 3.7. Calc. for C₃₈H₃₆As₂LaN₃O₁₂: C, 45.0; H, 3.6; N, 4.1%. IR (CsI disc, cm⁻¹): 3400br, 1477s, 1307s, 1186w, 1089s, 1032m, 999m, 908s, 888s, 820m, 743s, 691s, 478s, 457m, 368s, 361s. ¹H NMR (300 K, CDCl₃): 7.3–7.8(m), 3.7(q, J = 7 Hz), 1.20(t, J = 7 Hz). $\Lambda_{\rm M}$ (CH₂Cl₂, 10⁻³ mol dm⁻³) 4 Ω⁻¹ cm² mol⁻¹.

4.6. $[La(Ph_3AsO)_3(NO_3)_3]$ · Me_2CO

A solution of La(NO₃)₃·6H₂O (0.22 g, 0.50 mmol) in boiling acetone (10 cm³) was added to a solution of Ph₃AsO (0.48 g, 1.5 mmol) in acetone (10 cm³), the solution was evaporated to 10 cm³, then refrigerated for 24 h. The colourless crystals were filtered off and dried in vacuo. Yield: 0.55 g, 85%. *Anal.* Found: C, 50.4; H, 3.7; N, 2.6. Calc. for C₅₇H₅₁As₃LaN₃O₁₃: C, 50.7; H, 3.8; N, 3.1%. IR (CsI disc, cm⁻¹): 3054w, 1702w, 1486s, 1454s, 1442s, 1363s, 1304s, 1226w, 1185w, 1163w, 1089m, 1070w, 1033m, 999w, 924w, 890s, 821m, 747s, 693s, 533m, 478s, 359s. ¹H NMR (300 K, CDCl₃): 7.2–7.65(m), 2.15(s). $\Lambda_{\rm M}$ (CH₂Cl₂, 10⁻³ mol dm⁻³) 4 Ω^{-1} cm² mol⁻¹.

4.7. $[La(Ph_3AsO)_4(NO_3)_2]NO_3 \cdot Me_2CO$

A solution of La(NO₃)₃·6H₂O (0.43 g, 1.0 mmol) in boiling acetone (10 cm³) was added to a solution of Ph₃AsO (1.9 g, 6.0 mmol) in acetone (30 cm³), and the mixture left at room temperature for 1 d. Colourless crystals formed. Yield: 1.23 g, 73%. *Anal.* Found: C, 53.2; H, 4.2; N, 2.5. Calc. for C₇₅H₆₆As₄LaN₃O₁₄: C, 53.6; H, 3.8; N, 2.6%. IR (CsI disc, cm⁻¹): 3059w, 1707m, 1442s, 1361s, 1313s, 1228m, 1189m, 1089s, 1050w, 1036w, 999m, 925sh, 891s, 836w, 820m, 746s, 693s, 614w, 479s, 366s. ¹H NMR (300 K, CDCl₃): 7.2–7.7 (m), 2.15(s). $\Lambda_{\rm M}$ (CH₂Cl₂, 10⁻³ mol dm⁻³) 21 Ω^{-1} cm² mol⁻¹.

4.8. [Sc(Me₃AsO)₆](NO₃)₃

Scandium nitrate hydrate (0.17 g, 0.75 mmol) and Me₃AsO (0.61 g, 4.5 mmol) were dissolved separately in ice-cold ethanol (10 cm³), the solutions mixed and stirred for 1 h. The solution was concentrated in vacuo to 10 cm³ and refrigerated overnight. The white solid was filtered off and dried in vacuo. Yield: 0.18 g, 38%. *Anal.* Found: C, 20.3; H, 5.1; N, 4.6. Calc. for $C_{18}H_{54}As_6N_3O_{15}Sc: C, 20.7; H, 5.2; N, 4.0\%$. IR (CsI disc, cm⁻¹): 3010w, 1648w, 1364s, 1269m, 1111m, 1048w, 925s, 873vs, 848s, 836sh, 648s, 396s, 303m. ¹H NMR (300 K, CD₃NO₂): 2.3(s). ¹³C{¹H} NMR (300 K, MeNO₂/CD₃NO₂): 15.0(s). ⁴⁵Sc NMR (300 K, MeNO₂/

CD₃NO₂): 58.0 ($W_{1/2}$, 1200 Hz); with excess Me₃AsO 56.0 ($W_{1/2}$, 80 Hz). $\Lambda_{\rm M}$ (MeNO₂, 10⁻³ mol dm⁻³) 157 Ω^{-1} cm² mol⁻¹; with excess Me₃AsO $\Lambda_{\rm M} = 220$.

4.9. $[Y(Me_3AsO)_6](NO_3)_3$

Prepared as above from Y(NO₃)₃·6H₂O (0.19 g, 0.5 mmol) and Me₃AsO (0.408 g, 3.0 mmol). Yield: 0.29 g, 53%. *Anal.* Found: C, 19.6; H, 4.9; N, 3.9. Calc. for C₁₈H₅₄As₆N₃O₁₅Y: C, 19.8; H, 5.0; N, 3.9%). IR (CsI disc, cm⁻¹): 3010w, 1642w, 1358s, 1270m, 1095m, 926s, 877vs, 836s, 650s, 353s, 288m. ¹H NMR (300 K, CD₃NO₂): 2.55 (s). ¹³C{¹H} NMR (300 K, MeNO₂/CD₃NO₂): 15.0(s). ⁸⁹Y NMR (200 K, EtNO₂/CDCl₃): 112(s); with excess Me₃AsO 133(s). *A*_M (MeNO₂, 10⁻³ mol dm⁻³) 180 Ω⁻¹ cm² mol⁻¹; with excess Me₃AsO *A*_M = 240.

4.10. [La(Me₃AsO)₆](NO₃)₃

A boiling solution of La(NO₃)₃·6H₂O (0.14 g, 0.33 mmol) in acetone (10 cm³) was added to a solution of Me₃AsO (0.27 g, 2.0 mmol) in acetone (10 cm³). The solution was refrigerated overnight and the white solid produced, filtered off and dried in vacuo. Yield: 0.21 g, 55%. *Anal.* Found: C, 19.2; H, 4.9; N, 4.2. Calc. for C₁₈H₅₄As₆LaN₃O₁₅: C, 19.0; H, 4.8; N, 3.7%. IR (CsI disc, cm⁻¹): 2936w, 1653w, 1359s, 1269w, 1091m, 987w, 924s, 864vs, 847s, 836sh, 647s, 317s, 279m. ¹H NMR (300 K, CD₃NO₂): 2.3 (s). ¹³C{¹H} NMR (200 K, EtNO₂/CDCl₃): 15.0 (s). *A*_M (MeNO₂, 10⁻³ mol dm⁻³) 121 Ω⁻¹ cm² mol⁻¹; with excess Me₃AsO *A*_M = 285.

4.11. $[La(Me_3AsO)_2(H_2O)(NO_3)_3]$

A solution of La(NO₃)₃·6H₂O (0.43 g, 1.0 mmol) in boiling ethanol (10 cm³) was treated with Me₃AsO (0.27 g, 2.0 mmol) in ethanol (10 cm³). The mixture was refrigerated overnight and the white solid which separated, filtered off and dried in vacuo. Yield: 0.12 g, 20%. *Anal.* Found: C, 12.4; H, 3.6; N, 6.4. Calc. for C₆H₂₀As₂LaN₃O₁₂: C, 11.7; H, 3.3; N, 6.8%. IR (CsI disc, cm⁻¹): 3400br, 3095w, 1620m, 1455m, 1407m, 1358m, 1322w, 1287s, 1266w, 1040m, 924m, 875s, 860s, 850m, 822w, 736m, 644m, 595w, 323s, 285sh. ¹H NMR (300 K, CD₃NO₂): 2.2 (s), 2.6 (s).

4.12. X-ray crystallographic studies

Selected crystallographic details of the six compounds studied are given in Table 6. Crystals which were either small or of modest quality were obtained by vapour diffusion using the liquids CH_2Cl_2/Et_2O or $MeNO_2/Et_2O$ (Me₃AsO complexes) with the sealed containers being held in the refrigerator. Data were

Table 6 Crystallographic data ^a

	$[Sc(Ph_3AsO)_3-(NO_3)_2]NO_3 \cdot H_2O$	$[Y(Ph_3AsO)_4(NO_3)_2]-NO_3\cdot 1/2H_2O$	[La(Ph ₃ AsO) ₂ - (EtOH)(NO ₃) ₃]	$[La(Ph_3AsO)_4(NO_3)_2]-NO_3 \cdot 2Me_2CO$	$[Y(Me_3AsO)_6]-(NO_3)_3 \cdot H_2O$	[Sc(Me ₃ AsO) ₆]- (NO ₃) ₃
Formula	C ₅₄ H ₄₇ As ₃ N ₃ O ₁₃ Sc	C ₇₂ H ₆₁ As ₄ N ₃ O _{13.5} Y	C ₃₈ H ₃₆ As ₂ LaN ₃ O ₁₂	C ₇₈ H ₇₂ As ₄ LaN ₃ O ₁₅	C ₁₈ H ₅₆ As ₆ N ₃ O ₁₆ Y	C ₁₈ H ₅₄ As ₆ N ₃ O ₁₅ Sc
Formula weight	1215.67	1572.83	1015.45	1730.03	1109.10	1047.12
Crystal system	triclinic	triclinic	monoclinic	triclinic	monoclinic	monoclinic
Space group	<i>P</i> 1 (no. 2)	<i>P</i> 1 (no. 2)	$P2_1/n$ (no. 14)	<i>P</i> 1 (no. 2)	<i>Pn</i> (no. 7)	$P2_1/n$ (no. 14)
Unit cell dimension	15					
a (Å)	10.9069(2)	13.2731(2)	17.239(3)	14.8068(1)	11.1136(5)	10.9800(4)
b (Å)	12.7505(4)	14.4205(2)	10.904(2)	15.6295(1)	11.4594(5)	11.2665(4)
c (Å)	22.2281(7)	20.1717(5)	21.907(4)	18.3401(1)	15.9320(9)	15.7688(7)
α (°)	84.792(2)	104.293(7)	90	65.9821(6)	90	90
β (°)	81.577(2)	96.302(9)	104.32(2)	80.3764(5)	91.088(2)	90.833(2)
γ (°)	73.000(1)	112.06(1)	90	86.7683(4)	90	90
$U(Å^3)$	2920.5(1)	3378.2(1)	3990.0(12)	3821.96(5)	2028.7(2)	1950.5(1)
Ζ	2	2	4	2	2	2
μ (Mo K α) (cm ⁻¹)	18.73	28.74	27.82	23.41	63.45	52.98
Unique	10 179	11 685	6940	17165	6448	$3421 \ (R_{int} = 0.085)$
reflections	$(R_{\rm int} = 0.038)$	$(R_{\rm int} = 0.064)$	$(R_{\rm int} = 0.099)$	$(R_{int} = 0.079)$	$(R_{\rm int} = 0.088)$	(int)
No. of parameters, restraints	642/0	832/6	506/0	910/0	244/14	126/13
R ^b	0.066 (n = 2,	0.057 ($n = 2$,	0.081 (n = 2,	0.056 (n = 3,	$0.064 \ (n=2,$	0.091 (n = 2,
$(I > n\sigma(I))$	6562 refls)	9012 refls)	5347 refls)	10440 refls)	4413 refls)	2040 refls)
wR_2^{b} (all data)	0.220	0.158	0.271	,	0.161	0.275

^a $\lambda = 0.71073$ Å, T = 150 K.

^b $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$.

recorded on either a Rigaku AFC7S or Nonius CCD diffractometer, the latter usually used with the smaller crystals. Psi-scan (Rigaku) or SORTAV [18] (Nonius) absorption corrections were used. Structure solution was routine [19.20] with refinement being carried out using SHELXL-97 [21] or the TEXSAN package [22]. The compound [Y(Me₃AsO)₆](NO₃)₃·H₂O is described in the space group Pn rather than the centrosymmetric space group P2/n. The intensity statistics favoured Pnand more importantly attempts to solve the structure in P2/n or transform the coordinates of Pn into P2/n did not yield a satisfactory structure. Refinement was as a racemic twin and restraints (N-O,O...O) on two nitrate anions were used. La(Ph₃AsO)₄(NO₃)₂]NO₃ was isolated as the acetone solvate from the synthesis. The anions in [Y(Ph₃AsO)₄(NO₃)₂]NO₃·1/2H₂O are described as one disordered group with the N located on a centre of symmetry and a second general (two-fold) NO_3 with a site occupation of 0.5. E.s.d. values of the cell dimensions are taken from the diffractometer software recognising that for the CCD data the values are unrealistically small [23].

5. Supplementary material

Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 160950 ([La(Ph₃AsO)₄- $(NO_3)_2 NO_3 \cdot 2Me_2 CO)$, 160951 ([La(Ph₃AsO)₂(EtOH)-(NO₃)₃]), 160952 ([Sc(Me₃AsO)₆](NO₃)₃), 160953 ([Sc(Ph₃AsO)₃(NO₃)₂]NO₃·H₂O), 160954 ([Y(Ph₃AsO)₄-(NO₃)₂]NO₃·1/2H₂O) and 160955 ([Y(Me₃AsO)₆]-(NO₃)₃·H₂O). Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

We thank EPSRC for support and Professor M.B. Hursthouse for access to the Nonius Kappa CCD diffractometer.

References

- L. Deakin, W. Levason, M.C. Popham, G. Reid, M. Webster, J. Chem. Soc., Dalton Trans. (2000) 2439.
- [2] W. Levason, E.H. Newman, M. Webster, Polyhedron 19 (2000) 2697.
- [3] D.R. Cousins, F.A. Hart, J. Inorg. Nucl. Chem. 29 (1967) 2965.
- [4] G.A. Rodley, D.M.L. Goodgame, F.A. Cotton, J. Chem. Soc. (1965) 1499.
- [5] A.M. Brodie, S.H. Hunter, G.A. Rodley, C.J. Wilkins, Inorg. Chim. Acta 2 (1968) 195.

- [6] P.L. Goggin, in: G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds.), Comprehensive Coordination Chemistry, vol. 2, Pergamon, Oxford, 1987, pp. 487–504.
- [7] J. Sakamoto, C. Miyake, Kidorui (Rare Earths), 22 (1993) 154 (Chem. Abs. 122 (1995) 278608y).
- [8] W. Levason, E.H. Newman, M. Webster, Acta Crystallogr., Sect. C 56 (2000) 1308.
- [9] D.-L. Long, H.-M. Hu, J.-T. Chen, J.-S. Huang, Acta Crystallogr., Sect. C 55 (1999) 1662.
- [10] R.R. Carlson, D.W. Meek, Inorg. Chem. 13 (1974) 1741.
- [11] R.S. Armstrong, M.J. Aroney, R.J.W. LeFevre, R.K. Pierens, J.D. Saxby, C.J. Wilkins, J. Chem. Soc., (A) (1969) 2735.
- [12] R.R. Ryan, E.M. Larson, G.F. Payne, J.R. Peterson, Inorg. Chim. Acta 131 (1987) 267.
- [13] U. Casellato, R. Graziani, U. Russo, B. Zarli, Inorg. Chim. Acta 166 (1989) 9.
- [14] M. Shao, X. Jin, Y. Tang, Q. Huang, Y. Huang, Tetrahedron Lett. 23 (1982) 5343.

- [15] G. Ferguson, E.W. Macauley, J. Chem. Soc., (A) (1969) 1.
- [16] C.J. Wilkins, K. Hagen, L. Hedberg, Q. Shen, K. Hedberg, J. Am. Chem. Soc. 97 (1975) 6352.
- [17] A. Merijanian, R.A. Zingaro, Inorg. Chem. 5 (1966) 187.
- [18] R.H. Blessing, Acta Crystallogr., Sect. A 51 (1995) 33.
- [19] G.M. Sheldrick, SHELXS 86, Acta Crystallogr., Sect. A 46 (1990) 467.
- [20] P.T. Beurskens, G. Admiraal, G. Buerskens, W.P. Bosman, S. Garcia-Granda, R.O. Gould, J.M.M. Smits, C. Smykalla, PATTY, The DIRDIF Program System, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1992.
- [21] G.M. Sheldrick, SHELXL-97, Program for crystal structure refinement, University of Göttingen, Göttingen, Germany, 1997.
- [22] TEXSAN: Crystal Structure Analysis Package, version 1.8. Molecular Structure Corporation, The Woodlands, TX, 1997.
- [23] F.H. Herbstein, Acta Crystallogr., Sect. B 56 (2000) 547.