

PII: S0040-4039(96)01924-7

First Synthesis of *cis*-Enediynes from 1,5-Diynes by an Acid-Mediated Allylic Rearrangement

Wei-Min Dai* and Kin Chiu Fong

Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong

Abstract: The first synthesis of cis-enediynes 11 from 1,5-diyne 7 is achieved by treatment with 1 equivalent of CSA in CH₂Cl₂ at 20 °C in the presence of ROH or RSH to provide 11 as the major products in good yield. An 11-membered ring enediyne 15 was prepared similarly in 47% yield. Copyright © 1996 Elsevier Science Ltd

The enediyne antitumor antibiotics are a novel class of natural products possessing a 1,5-diyn-3-ene unit in a strained 9- or 10-membered ring.¹ After bioactivation, the enediyne undergoes a cycloaromatization to form 1,4-benzenoid diradical which causes DNA strand cleavage by abstraction of hydrogen atoms from the sugar-phosphate backbone.¹ Syntheses of naturally occurring enediynes and analogs have been the focus of many research efforts in the recent years.^{1a,e} The *cis*-enediynes are prepared by a Pd(0)-mediated cross-coupling reaction of vinyl halides with terminal acetylenes under the Sonogashira conditions.² Moreover, a number of methods have been developed to convert 1,5-diynes into *cis*-enediynes by introducing a double bond through the reductive elimination.³ the acid-⁴ or base-induced⁵ elimination of alcohols, the elimination of diol using the Corey-Winter reagent,⁶ the benzylic oxidation,⁷ the Norrish Type II reaction,⁸ the rearrangement of allylic alcohol,⁹ and the retro-Diels-Alder Reaction.¹⁰ These methods provide the chemical basis for enediyne prodrug¹¹ design and synthesis. In our work on conversion of 1,5-diyne 1 into *cis*-enediyne 2 via the allylic mesylate 3 (Scheme 1), an S_N2' mechanism was proposed to account for the regioselectivity.⁹ It is interesting

to explore the allylic rearrangement $(1\rightarrow 2 \text{ or the reverse reaction})$ under acidic conditions involving the allylic cation 4^{12} as the reactive intermediate. We now report on the first synthesis of *cis*-enediynes 11 by an acid-promoted allylic migration of 1,5-diyne 7 with high regioselectivity and *trans/cis* stereoselectivity.¹³

The 1,5-diyne 7 was prepared from the commercially available α -bromocinnamaldehyde (5) in two steps (Scheme 2).¹⁴ Cross-coupling of 5 with HC=C(CH₂)₄OMe in the presence of 5 mol% Pd(PPh₃)₄ and 10 mol% CuI (Et₃N, THF, rt, 1 h) afforded 6 (90%). Addition of LiC=CCH₂SPh to 6 in THF at -78 °C for 30 min gave 7 in 71% yield. Treatment of 7 with one mole equivalent of (±)-10-camphorsulfonic acid (CSA) in dry CH₂Cl₂ at 20 °C for 16 h furnished the *cis*-enediyne 10 in 56% isolated yield together with the *trans*enediyne 8 and the 1,5-diyne 9 (a 34:66 mixture of 8:9 in a 26% combined yield). The same reaction was monitored in CD₂Cl₂ at 20 °C by ¹H NMR technique, revealing a gradual decrease of 7 and increase of the three products 8-10. After 3 h, a mixture of 7:8+9:10 in the ratio of 6.5:35.0:58.5 was obtained. It is promising to note that the allylic rearrangement of 7 takes place under the acidic conditions to give the desired

Scheme 2

cis-enediyne 10 as the major product. However, the *trans/cis* stereoselectivity (8 versus 10) needs improvement. Since attack of H₂O at the allylic cation 4 [Scheme 1, $R^1 = -(CH_2)_4OMe$, $R^2 = -CH_2SPh$] can't produce the alcohols 8 and 9, other forms of the allylic cation should be involved in the reaction course.¹⁵

We performed the acid-mediated rearrangement of 7 or 10 in the presence of ROH and RSH (Scheme 3 and Table 1).¹⁴ In these reactions, we obtained two products 11 and 12; by-products related to compounds 8 and 9 were not detected. A complete control of the *trans/cis* stereoselectivity is achieved in the allylic migration. It was found that the reaction completed within 2-5 days in MeOH or EtOH (Entries 1 and 2). But, much short reaction time (2-4 h) was required in CH₂Cl₂ (Entries 3-7). In general, the regioselectivity (11 *versus* 12) of the allylic migration is dependent on the type of the nucleophile. The ratios of 11:12 are *ca*. 96:4 for ROH and *ca*. 70:30 for RSH regardless the nature of the R group. Similar results were obtained from the reaction of the *cis*-enediyne 10 with EtOH and EtSH (Entries 8 and 9) except for the longer reaction time compared with 7 (Entries 3 and 5). The results suggest that compounds 7 and 10 share the same intermediate 4 in the reactions. However, the conversion of 10 into 4 is slower than 7. This is consistent with the facile conversion of 7 into

a: Nu = MeO; b: Nu = EtO; c: Nu = PrO; d: Nu = EtS; e: Nu= PhS; f: Nu = PhS

Entry	Substrate	NuH	Reation Time (h)	Products (%)	Ratio (11:12)
1	7	MeOH ^b	48	11a (73); 12a (2)	97:3
2	7	EtOH ^b	120	11b (70); 12b (3)	96:4
3	7	EtOH	3	11b (71); 12b (3)	96:4
4	7	<i>i</i> -PrOH	4	11c (65); 12c (3)	96:4
5	7	EtSH	2.5	11d + 12d (79)	67:33
6	7	t-BuSH	2	11e + 12e (61)	73:27
7	7	PhSH	2.5	11f + 12f (54)	69:31
8	10	EtOH	48	11b (55); 12b ^c	
9	10	EtSH	48	11d + 12d (61)	68:32

Table 1. Synthesis of cis-Enediynes by Acid-Promoted Allylic Rearrangement at 20 °C.ª

10 mentioned in Scheme 2. We attempted to trap the cation 4 with an amide nucleophile, CH₃CONH*n*-Pr; but the expected products were not obtained. The synthesized *cis*-enediynes 10 and 11 can be oxidized to the corresponding ene-yne-propargylic sulfones which undergo a base-induced cycloaromatization to form diradicals at ambient temperature.⁹ DNA cleavage by such diradical species has been demonstrated.⁹

Finally, an 11-membered ring enediyne 15 was synthesized by the acid-promoted allylic rearrangement of 14 (Scheme 4). Cross-coupling of 5 with 2 mole equivalent of 1,8-nonadiyne (13) [Pd(PPh₃)₄, CuI, Et₃N, THF, rt, 2 h] gave the mono-coupling product (68%) which cyclized (LDA, CeCl₃, THF, -78 °C) to afford 14 in 20% yield. Treatment of 14 with CSA-EtOH in CH₂Cl₂ at rt for 3 h furnished the 11-membered ring enediyne 15 in 47% yield. A minor regioisomer related to 14 (replacing HO with EtO) was isolated (3%). This is the first example that the allylic migration strategy can be used to synthesize cyclic enediyne from 1,5-diyne.

Scheme 4

^{*}Reactions were performed in CH₂Cl₂ in the presence of 1 mole equivalent of CSA and 2 mole equivalent of nucleophile. ^bThe nucleophile was used as solvent. Not isolated.

In summary, we have established a novel synthesis of *cis*-enediynes by the acid-promoted allylic migration of 1,5-diyne 7^{16} in the presence of ROH with high regioselectivity ($\geq 96\%$) and *trans/cis*-stereoselectivity (100%). The realization of such transformation in the cyclic 1,5-diyne system provides a novel approach to enediyne prodrug design and synthesis. Recently, an allylic migration to a 9-membered ring enediyne was proposed for the activation of the artifacts of maduropeptin chromophore.¹⁷ Our work may help to understand the chemical basis of the activation process in the biological system.

Acknowledgment. Financial support by a Competitive Earmarked Research Grant (HKUST212/93E) from Hong Kong Research Grants Council and the Department of Chemistry, HKUST is acknowledged.

References and notes:

- Selected reviews: (a) Nicolaou, K. C.; Dai, W.-M. Angew. Chem. Int. Ed. Engl. 1991, 30, 1387-1530. (b) Lee, M. D.; Ellestad, G. A.; Borders, D. B. Acc. Chem. Res. 1991, 24, 235-240. (c) Goldberg, I. H. Acc. Chem. Res. 1991, 24, 191-198. (d) Nicolaou, K. C.; Smith. A. L. In Modern Acetylene Chemistry; Stang, P. J.; Diederich, F., Eds.; VCH: Weinheim, 1995; pp 203-283. (e) Lhermitte, H.; Grierson, D. S. Comtemporary Org. Syn. 1996, 3, 41-63 and 93-124.
- (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467-4470. (b) Sonogashira, K. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, 1991; vol. 3, pp. 521-549.
- 3. Myers, A. G.; Dragovich, P. S. J. Am. Chem. Soc. 1992, 114, 5859-5860.
- 4. Yoshimatsu, M.; Yamada, H.; Shimizu, H.; Kataoka, T. J. Chem. Soc., Chem. Commun. 1994, 2107-2108.
- (a) Audrain, H.; Skrydstrup, T.; Ulibarri, G.; Grierson, D. S. Synlett 1993, 20-22. (b) Audrain, H.; Skrydstrup, T.; Ulibarri, G.; Riche, C.; Chiaroni, A.; Grierson, D. S. Tetrahedron 1994, 50, 1469-1502. (c) Shibuya, M.; Sakai, Y.; Naoe, Y. Tetrahedron Lett. 1995, 36, 897-898. (d) Iida, K.; Hirama, M. J. Am. Chem. Soc. 1995, 117, 8875-8876.
- (a) Semmelhack, M. F.; Gallagher, J. Tetrahedron Lett. 1993, 34, 4121-4124. (b) Semmelhack, M. F.; Gallagher, J. J.; Ding, W.-D.; Krishnamurthy, G.; Babine, R.; Ellestad, G. A. J. Org. Chem. 1994, 59, 4357-4359.
- (a) Maier, M. E.; Brandstetter, T. Tetrahedron Lett. 1991, 32, 3679-3682. (b) Maier, M. E.; Greiner, B. Liebigs Ann. Chem. 1992, 855-861.
- 8. J. M. Nuss, M. M. Murphy, Tetrahedron Lett. 1994, 35, 37-40.
- 9. Dai, W.-M.; Fong, K. C.; Danjo, H.; Nishimoto, S. Angew. Chem. Int. Ed. Engl. 1996, 35, 779-781.
- 10. Bunnage, M. E.; Nicolaou, K. C. Angew. Chem. Int. Ed. Engl. 1996, 35, 1110-1112.
- 11. Review: Maier, M. E. Synlett 1995, 13-26.
- 12. For 1,2,3-trimethylallyl cation: Bollinger, J. M.; Brinich, J. M.; Olah, G. A. J. Am. Chem. Soc. 1970, 92, 4025-4033.
- Dai, W.-M.; Fong, K. C. 211th ACS National Meeting, New Orleans, LA, March 24-28, 1996; American Chemical Society, Washington, D.C., 1996; Abstract ORGN063.
- 14. All new compounds are characterized by ¹H and ¹³C NMR, MS, and elemental analysis.
- 15. By placing Ph. -C=CR², or both substituents in the *trans* relationship with -C=CR¹ in the W cation 4, two sickle and one U cations can be obtained. See: ref. 12 and Hoffmann, H. M. R. Angew. Chem. Int. Ed. Engl. 1973, 12, 819-835.
- 16. The phenyl group in 7 is necessary for generation of the cation 4 under the acidic conditions. Replacing by a methyl group failed to form the products (CSA, EtOH, CH₂Cl₂, rt, 48 h). The substrate was recovered.
- Schroeder, D. R.; Colson, K. L.; Klohr, S. E.; Zein, N.; Langley, D. R.; Lee, M. S.; Matson, J. A.; Doyle, T. W. J. Am. Chem. Soc. 1994, 116, 9351-9352.

(Received in Japan 19 August 1996; revised 24 September 1996; accepted 25 September 1996)