

Carbohydrate Research 298 (1997) 123-126

CARBOHYDRATE RESEARCH

Note

Synthesis and reactions of 5-(D-*arabino*tetrahydroxybutyl)-3-(2,3-dihydro-1,3,4oxadiazole-2-thion-5-yl)-2-methylfuran and 5-(D-*arabino*-tetrahydroxybutyl)-3-(2-substituted amino-1,3,4-oxadiazol-5-yl)-2-methylfuran

Seham Y. Hassan, Hassan M. Faidallah, Abdel Moneim El-Massry, Mohamed M. El-Sadek *

Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, Alexandria 21321, Egypt

Received 1 July 1996; accepted in revised form 29 October 1996

Keywords: Oxadiazoles; Furans; Polyhydroxyalkyl heterocycles

In continuation of our work on the synthesis of nitrogen heterocycles from saccharide derivatives [1–7], 5-(D-*arabino*-tetrahydroxybutyl)-3-(2,3-dihydro-1,3,4-oxadiazole-2-thion-5-yl)-2-methylfuran (2) was prepared when 5-(D-*arabino*-tetrahydroxybutyl)-2-methyl-3-furoylhydrazine [4] (1) was allowed to react with carbon disulfide in hot ethanolic potassium hydroxide solution [8,9]. The structure of 2 was confirmed by IR, ¹H NMR, and MS spectroscopy (see Experimental).

Reaction of 2 with a number of aromatic amines afforded the corresponding Mannich bases 5-(p*arabino*-tetrahydroxybutyl)-3-(2,3-dihydro-3-(arylaminomethyl)-1,3,4-oxadiazole-2-thion-5-yl)-2-methylfuran (3-6) in high to moderate yields (see Scheme 1 and Table 1). Oxidation of 2 with hydrogen peroxide in acetic acid gave the corresponding 2-oxooxadiazole derivative 7, while periodate oxidation afforded the 5-formyl derivative 8.

When the hydrazide 1 was condensed with allylor phenyl-isothiocyanate, it afforded the corresponding 1-(5-D-*arabino*-tetrahydroxybutyl)-2-methylfuro-3-yl)-4-substituted thiosemicarbazides (9 and 10, respectively), which were easily cyclodesulfurized with yellow mercuric oxide to afford 5-(D-*arabino*-tetrahydroxybutyl)-3-(2-substituted amino-1,3,4-oxadiazol-5-yl)-2-methylfurans 11 and 12 (see Table 2).

1. Experimental

General methods.—Melting points were determined on a Kofler block and are uncorrected. IR spectra were recorded on Unicam SP 1025 and SP 2000 spectrophotometers. ¹H NMR spectra were recorded with a Varian EM-90 instrument with Me_4Si as the internal standard. Mass spectra were obtained with a Kratos MS 30 instrument. Microanalyses were performed at the Faculty of Science, Cairo University, Cairo, Egypt. Solutions were evaporated under diminished pressure unless stated otherwise. TLC was done on silica gel plates using CHCl₃–MeOH mixtures.

5-(D-arabino-Tetrahydroxybutyl)-3-(2,3-dihydro-1,3,4-oxadiazole-2-thion-5-yl)-2-methylfuran (2).—To

0008-6215/97/\$17.00 Copyright © 1997 Elsevier Science Ltd. All rights reserved. *PII* S0008-6215(96)00288-1

^{*} Corresponding author.

a cold stirred solution of 5-(D-*arabino*-tetrahydroxybutyl)-2-methyl-3-furoylhydrazine (5.2 g, 20 mmol) in EtOH (50 mL) containing KOH (1.12 g, 20 mmol), CS₂ (7.6 g, 100 mmol) was added gradually. The mixture was heated under reflux on a steam-bath until H₂S evolution ceased. EtOH was removed by distillation under diminished pressure, the residue was stirred with H₂O, filtered, and the filtrate was neutralized with 10% HCl. The precipitated product was filtered off, washed thoroughly with H₂O, dried, and recrystallized from EtOH (3.5 g, 57.9%), mp 160 °C. γ_{max} (cm⁻¹): 1092 (C=S), 1657 (C=N), 3217 and 3417 (NH, OH). ¹H NMR (Me₂SO- d_6): δ 2.60 (s, 3 H, CH₃), 3.80–4.90 (m, 9 H, carbohydrate residue), 6.65 (s, 1 H, H-4 furan); *m/z* (relative abundance) 50(8.8), 51(12.3), 53(20.9), 55(15.6), 56(19.0), 63(5.3), 64(19.0), 65(7.1), 74(5.3), 76(100.0), 78(10.4), 80(5.9), 121(7.8), 136(14.5), 168(7.8), 194(2.2), 195(25.1), 196(3.7), 210(8.4), 211(93.0), 268(2.9), 284(39.1). Found: C, 43.80; H, 4.67; N, 9.11; C₁₁H₁₄N₂O₆S required: C, 43.70; H, 4.67; N, 9.27.

5-(D-arabino-Tetrahydroxybutyl)-3-(2,3-dihydro-3-(arylaminomethyl)-1,3,4-oxadiazole-2-thion-5-yl)-2-

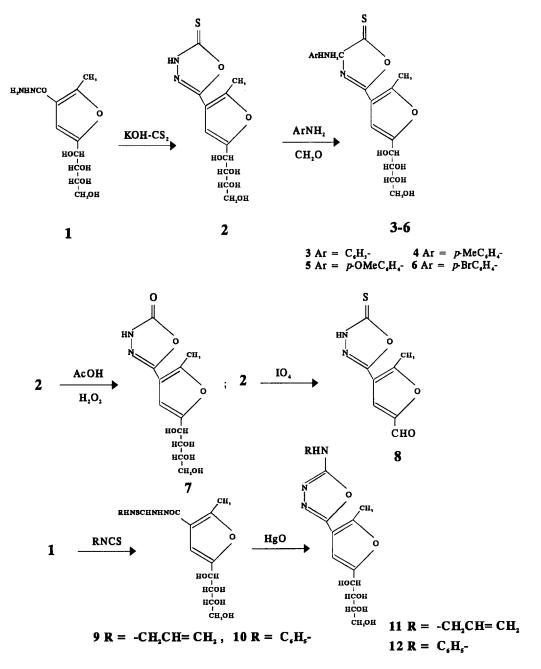


Table I IR Spectral data and analytical data of compounds 3–6

Com- pound	Ar.	C=S	C=N	NH, OH	Mp (dec.)	Yield (%)	Molecular formula	Anal. Calcd/Found		
								С	Н	N
3	C ₆ H ₅ -	1065	1643	3385, 3455	170°	99.0	C ₁₈ H ₂₁ N ₃ O ₆ S	53.06	5.20	10.31
								53.00	5.30	10.33
4	<i>p</i> -MeC ₆ H ₄ -	1086	1643	3347, 3409	103°	83.0	$C_{19}H_{23}N_3O_6S$	54.14	5.50	9.97
							17 25 5 6	54.20	5.55	10.00
5	<i>p</i> -OMeC ₆ H ₄ -	1084	1641	3314, 3435	90°	68.6	C ₁₉ H ₂₃ N ₃ O ₇ S	52.16	5.30	9.61
							17 20 7 1	52.10	5.35	9.65
6	p-BrC ₆ H ₄ -	1088	1627	3346, 3497	110°	82.2	$C_{18}H_{20}BrN_{3}O_{6}S$	44.45	4.15	8.64
							10 20 0 0	44.45	4.20	8.80

methylfuran (3–6).—A solution of the required arylamine (0.93 g, 1 mmol) in EtOH (5 mL) was added dropwise to a stirred solution of compound 2 (0.30 g, 1 mmol) in EtOH (10 mL) containing formalin (2 mL, 37%). The mixture was stirred for 3 h at room temperature and then refrigerated overnight. The separated product was filtered off, washed with EtOH, dried, and recrystallized from EtOH as needles. ¹H NMR (Me₂SO-d₆) of compound 4: δ 2.15 (s, 3 H, CH₃), 4.25–6.05 (m, 11 H, carbohydrate residue and CH₂N), 6.50 (s, 1 H, H-4 furan), 6.55–7.55 (m, 5 H, Ar-H and N-H) (Table 1).

5-(D-arabino-*Tetrahydroxybutyl*)-3-(2, 3, -*dihydro*-1,3,4-oxadiazole-2-one-5-yl)-2-methylfuran (7).—The title compound was prepared by stirring a solution of compound 2 (1.0 g, 3 mmol) in glacial CH₃COOH (10 mL) with H_2O_2 (5 mL, 30%) for 3 h at room temperature. The mixture was then poured into cold water and the product filtered off, washed with water, and dried. It was recrystallized from EtOH (0.3 g,

30.3%), mp 145 °C (dec). γ_{max} (cm⁻¹): 1642 (C=N), 1690 (C=O), 3369 and 3435 (NH, OH). Found: C, 46.10; H, 4.95; N, 9.80; C₁₁H₁₄N₂O₇ required: C, 46.15; H, 4.93; N, 9.79.

3-(2,3-Dihydro-1,3,4-oxadiazole-2-thion-5-yl)-5formyl-2-methylfuran (8).—A solution of 2 (1.5 g, 5 mmol) in distilled water was treated with a slight excess of a saturated solution of NaIO₄ (3.5 g, 16 mmol) in distilled H₂O (25 mL) dropwise with stirring for 1 h. The aldehyde derivative that separated out was filtered off, washed with little water, and dried. It was recrystallized from EtOH as needles (0.45 g, 42.8%), mp 109 °C (dec). γ_{max} (cm⁻¹): 1060 (C=S), 1642 (C=N), 1661 (CHO), 3331 (NH). Found: C, 45.70; H, 2.90; N, 13.35; C₈H₆N₂O₃S required: C, 45.71; H, 2.88; N, 13.33.

l-(5-D-arabino-Tetrahydroxybutyl)-2-methylfuro-3-yl)-4-substituted thiosemicarbazide (9, 10). A solution of compound 1 (1.3 g, 5 mmol) in EtOH (50 mL) was heated under reflux with substituted isothio-

Table 2Analytical data of compounds 9–12

Compound	R	Мр	Yield (%)	Molecular formula	Anal. Calcd/Found		
					C	Н	N
9	Allyl	195°	77.9	$C_{14}H_{21}N_3O_6S$	46.78 46.80	5.89 5.90	11.69 11.70
10	Ph	95°	86.0	$C_{17}H_{21}N_3O_6S$	51.63 51.70	5.35 5.20	10.63 10.60
11	Allyl	110°	51.2	$C_{14}H_{19}N_3O_6$	51.69 51.70	5.89 5.98	12.92 13.00
12	Ph	145°	73.8	$C_{17}H_{19}N_3O_6$	56.50 56.60	5.30 5.35	11.63 11.70

cyanate (0.5 g, 5 mmol) for 2 h. After concentration and cooling, the solid deposited was filtered off, washed with a little EtOH, and dried. It was recrystallized from EtOH in needles (Table 2); IR of compound **9**: 1031 (C=S), 1641 (C=N), 1670 (C=O), 3307 and 3451 (NH and OH). IR of compound **10**: 1041 (C=S), 1636 (C=N), 1659 (C=O), 3267 and 3432 (NH and OH). ¹H NMR (Me₂SO-*d*₆) of compound **10**: δ 2.49 (s, 3 H, CH₃), 4.00–5.20 (m, 9 H, carbohydrate residue), 6.62 (s, 1 H, H-4 furan), 6.80– 7.45 (m, 5 H, Ar-H), 9.60 (sh, 1 H, NH), 9.80 (sb, 1 H, NH), 10.90 (sb, 1 H, NHCO).

5-(D-arabino-Tetrahydroxybutyl)-3-(2-substituted amino-1,3,4-oxadiazol-5-yl)-2-methylfuran (11 and 12).—Finely powdered HgO (0.6 g, 32 mmol) was added portionwise over a period of 30 min, to a boiling stirred solution of 1-(5-D-arabino-tetrahydroxybutyl)-2-methylfuro-3-yl)-4-substituted thiosemicarbazide (9 and 10) (1.1 g, 3 mmol) in EtOH (100 mL). The suspension was stirred and heated under reflux for 3 h. The hot mixture was filtered and the black precipitate was washed with boiling EtOH (10 mL). The combined filtrate and washings were concentrated to small volume, then a few drops of H₂O were added and the mixture was left overnight at room temperature to effect complete deposition of the product, which was filtered off, washed, dried, and recrystallized from EtOH (Table 2). IR of compound **11**: 1620 (C=N), 3250-3357 (NH and OH). IR of compound **12**: 1634 (C=N), 3216-3407 (NH and OH); and its ¹H NMR (Me₂SO- d_6): δ 2.50 (s, 3 H, CH₃), 4.15-5.15 (m, 9 H, the sugar part), 6.45 (s, 1 H, H-4 furan), 6.70-7.55 (m, 5 H, Ar-H), 10.40 (sb, 1 H, NH).

References

- H. El-Khadem, Z.M. El-Shafei, E.H. El-Ashry, and M.M. El-Sadek, *Carbohydr. Res.*, 49 (1976) 185–193.
- [2] M.M. El-Sadek, M.A. Mostafa, M.M. Abdel Rahman, and N.B. Zagzoug, *Bratislava Symp. Saccharides*, Smolenice, Czechoslovakia (1984) 67.
- [3] M.M. El-Sadek, H.M. Faidallah, and S.Y. Hassan, *Carbohydr. Res.*, 199 (1990) 248–254.
- [4] M.M. El-Sadek and N.B. Zagzoug, *Carbohydr. Res.*, 212 (1991) 261–265.
- [5] M.M. El-Sadek and N.N. El-Soccary, *Carbohydr. Res.*, 222 (1991) 267–269.
- [6] M.M. El-Sadek, S.A. Abdel Baky, and N.N. El-Soccary, *Carbohydr. Res.*, 223 (1992) 311–319.
- [7] M.M. El-Sadek, N.B. Zagzoug, and N.N. El-Soccary, *Carbohydr. Res.*, 250 (1993) 323–326.
- [8] B. Rigo and D. Couturier, J. Heterocycl. Chem., 22 (1985) 287–288.
- [9] V.J. Ram, V. Dube, L.A.C. Pieters, and A.J. Vlietinck, J. Heterocycl. Chem., 26 (1989) 625–628.