Spectroscopic Characterization of (Iodomethyl)zinc Reagents Involved in Stereoselective Reactions: Spectroscopic Evidence That $IZnCH_2I$ Is Not $Zn(CH_2I)_2 + ZnI_2$ in the Presence of an Ether # André B. Charette* and Jean-François Marcoux Contribution from the Department of Chemistry, Université de Montréal, Montréal, Québec, Canada H3C 3J7 Received April 11, 1995[⊗] **Abstract:** We have shown that low-temperature 13 C NMR spectroscopy is an extremely powerful technique for characterizing the (iodomethyl)zinc-derived reagents involved in the cyclopropanation reactions. This technique has allowed us to spectroscopically characterize and unambigously differentiate the Furukawa reagent (EtZnCH₂I), the Simmons—Smith reagent (IZnCH₂I), and the Wittig reagent (Zn(CH₂I)₂). Unique spectra are obtained for each of these reagents when they are complexed to a chiral diether. We have also demonstrated that IZnCH₂I is not converted into Zn(CH₂I)₂ + ZnI₂ in CD₂Cl₂ in the presence of a chiral complexing agent. Furukawa's reagent "EtZnCH₂I", however, is in equilibrium with Et₂Zn and Zn(CH₂I)₂, and it eventually decomposes into PrZnI and EtZnI at room temperature. The decomposition of Zn(CH₂I)₂ into IZnCH₂I and of IZnCH₂I into ZnI₂ was monitored by NMR. We have also demonstrated that the general trends observed for the various equilibria involving (iodomethyl)zinc-derived reagents follow those observed with ethylzinc-derived organometallic compounds. ### Introduction The Simmons-Smith cyclopropanation reaction has been the subject of considerable synthetic investigations over the past 35 years. The classical procedure involves treatment of an olefin with Zn/Cu couple and CH₂I₂ to produce the corresponding cyclopropane.² Several modifications of the original protocol have since been reported. In 1966, Furukawa³ introduced a remarkable improvement that consisted of replacing the activated zinc by Et₂Zn. This procedure resulted in the formation of a more reactive reagent and reproducible results. A great deal of effort has been directed toward the determination of the exact nature of the reagents formed in these reactions, and controversies have appeared in the literature. The formation of zinc carbenoids, generally represented as RZnCH₂I,⁴ was invoked in all these protocols. Simmons^{1a,2} and Rickborn⁵ proposed that Zn(CH2I)2. ZnI2, resulting from the Schlenk equilibrium of IZnCH₂I, was the species responsible for the cyclopropanation (eq 1). $$2IZnCH2I \Rightarrow Zn(CH2I)2\cdot ZnI2$$ (1) Conversely, Dauben⁶ concluded that IZnCH₂I, and not Zn-(CH₂I)₂·ZnI₂, was the reactive species since he observed no alkoxide formation when a free alcohol was submitted to the Simmons—Smith conditions. Inouye⁷ suggested that EtZnCH₂I or IZnCH₂I was formed when EtZnI was treated with CH₂I₂ whereas Furukawa^{1b,3} proposed that the same reagent (EtZnCH₂I) could be generated from the reaction between Et₂Zn and CH₂I₂. He further postulated that the addition of a second equivalent of CH₂I₂ produces Zn(CH₂I)₂. He stipulated that "the active species may include EtZnCH₂I, IZnCH₂I and/or Zn(CH₂I)₂ or associated complexes containing these molecules." he major breakthrough was accomplished recently when Denmark⁸ characterized Zn(CH₂I)₂ by X-ray crystallography and NMR spectroscopy. Our interest in the development of new stereoselective cyclopropanation reactions^{9,10} compelled us to further characterize these different species. The full characterization and behavior of the various types of zinc carbenoids involved in [⊗] Abstract published in *Advance ACS Abstracts*, April 15, 1996. (1) (a) Simmons, H. E.; Cairns, T. L.; Vladuchick, S. A.; Hoiness, C. M. *Org. React.* **1973**, *20*, 1−131. (b) Furukawa, J.; Kawabata, N. *Adv. Organomet. Chem.* **1974**, *12*, 83−134. (c) Boersma, J. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Ed.; Pergamon Press: New York, 1984; Vol. 2, Chapter 16, pp 847−848. (d) Zeller, K.-P., Gugel, H. In *Houben-Weyl: Methoden der Organischen Chemie*; Regitz, M., Ed.; Georg Thieme Verlag: Stuttgart, 1989; Band EXIXb, p 195. (e) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. *Chem. Rev.* **1993**, *93*, 1307−1370. (f) Motherwell, W. B.; Nutley, C. J. *Contemp. Org. Synth.* **1994**, *1*, 219−241. ^{(2) (}a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323—5324. (b) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256—4264. ^{(3) (}a) Furukawa, J.; Kawabata, N.; Nishimura, J. *Tetrahedron Lett.* **1966**, 3353–3356. (b) Furukawa, J.; Kawabata, N.; Nishimura, J. *Tetrahedron* **1968**, 24, 53–58. ^{(4) (}a) Blanchard, E. P.; Simmons, H. E. J. Am. Chem. Soc. 1964, 86, 1337–1347. (b) Simmons, H. E.; Blanchard, E. P.; Smith, R. D. J. Am. Chem. Soc. 1964, 86, 1347–1356. (c) Wittig, G.; Wingler, F. Chem. Ber. 1964, 97, 2146–2164. (d) Burger, U.; Huisgen, R. Tetrahedron Lett. 1970, 3057–3060. (e) Miyano, S.; Yamashita, J.; Hashimoto, H. Bull. Chem. Soc. Jpn. 1972, 45, 1946. ⁽⁵⁾ Chan, J. H.-H.; Rickborn, B. J. Am. Chem. Soc. **1968**, 90, 6406–6411 ⁽⁶⁾ Dauben, W. G.; Berezin, G. H. J. Am. Chem. Soc. 1963, 85, 468–472. ⁽⁷⁾ Sawada, S.; Inouye, Y. Bull. Chem. Soc. Jpn. 1969, 42, 2669–2672. (8) (a) Denmark, S. E.; Edwards, J. P.; Wilson, S. R. J. Am. Chem. Soc. 1991, 113, 723–725. (b) Denmark, S. E.; Edwards, J. P.; Wilson, S. R. J. Am. Chem. Soc. 1992, 114, 2592–2602. ⁽⁹⁾ Charette, A. B.; Marcoux, J.-F. Synlett 1995, 1197-1207. ⁽¹⁰⁾ Chiral auxiliaries: (a) Charette, A. B.; Côté, B.; Marcoux, J.-F. J. Am. Chem. Soc. 1991, 113, 8166—8167. (b) Charette, A. B.; Marcoux, J.-F.; Côté, B. Tetrahedron Lett. 1991, 32, 7215—7218. (c) Charette, A. B.; Côté, B.; J. Org. Chem. 1993, 58, 933—936. (d) Charette, A. B.; Marcoux, J.-F. Tetrahedron Lett. 1993, 34, 7157—7160. (e) Charette, A. B.; Turcotte, N.; Côté, B. J. Carbohydr. Chem. 1994, 13, 421—432. (f) Charette, A. B.; Turcotte, N.; Marcoux, J.-F. Tetrahedron Lett. 1994, 35, 513—516. Chiral reagent: (g) Charette, A. B.; Juteau, H. J. Am. Chem. Soc. 1994, 116, 2651—2652. (h) Charette, A. B.; Prescott, S.; Brochu, C. J. Org. Chem. 1995, 60, 1081—1083. Chiral catalyst: (i) Charette, A. B.; Brochu, C. J. Am. Chem. Soc. 1995, 117, 11367—11368. Chiral allylic alcohols: (j) Charette, A. B.; Lebel, H. J. Org. Chem. 1995, 60, 2966—2967. Table 1. Effect of the reagents on the diastereoselectivities | entry | substrate | conditions ^a | $\mathrm{d}\mathrm{s}^b$ | |-------|-----------|-------------------------|--------------------------| | 1 | 1 | A | 7.0:1 | | 2 | 1 | В | 3.6:1 | | 3 | 1 | C | 1.2:1 | | 4 | 2 | A | 47:1 | | 5 | 2 | В | 27:1 | | 6 | 2 | C | 4.6:1 | ^a The reactions were carried out in CH₂Cl₂ either at 0 °C with 4 equiv of reagents (1) or at -20 °C with 10 equiv of reagents (2). To the zinc alkoxide (prepared from 1ROH + 1ZnEt₂) was added (conditions A) a 1:1 stoichiometry of Et₂Zn/CH₂I₂, (conditions B) a 1:2 stoichiometry of Et₂Zn/CH₂I₂, or (conditions C) a 1:1:1 stoichiometry of Et₂Zn/I₂/CH₂I₂. ^b ds = diastereoselectivity. Determined by GC (1)/HPLC (2) analysis of the crude reaction mixture. Yields were >90% in all the cases. ^{10a,j} these reactions are still unsolved issues and are extremely important for the rational design of a chiral catalyst for the RZnCH₂I-mediated cyclopropanation of allylic alcohols. Furthermore, the Schlenk equilibrium between the classical Simmons—Smith reagent (IZnCH₂I) and Zn(CH₂I)₂·ZnI₂ is still an open question. In this paper, we report spectroscopic evidence that indicates that the Schlenk equilibrium illustrated in eq 1 appears to lie far to the left (on the side of IZnCH₂I) under the conditions generally used for obtaining optimal selectivities in the cyclopropanation reactions.¹¹ We also report the first spectroscopic studies of Furukawa's reagent, EtZnCH₂I. ## **Results and Discussion** This study was undertaken following the troubling observation that the cyclopropanation of various chiral substrates led to significantly different diastereoselectivities depending on the reaction conditions. The ethylzinc alkoxides of two model substrates, 1 and 2, were first submitted to a 1:1 mixture of ZnEt₂ and CH₂I₂ (5 equiv) (Table 1). These conditions, which produced mainly EtZnCH₂I, were the most efficient, and the desired products were obtained in excellent yields and selectivities (entries 1 and 4). The use of a 1:2 mixture of the reagents to form Zn(CH₂I)₂ led to slightly lower selectivities (entries 2 and 5). Finally, the Simmons—Smith reagent (IZnCH₂I), prepared by adding sequentially I₂ and CH₂I₂ to Et₂Zn in CH₂Cl₂ to avoid the use of an ethereal solvent,¹² gave much lower diastereoselection (*vide infra*) (entries 3 and 6). These trends have been observed with other substrates and are also followed when only 1 equiv of the reagent is used.¹³ These results are quite intriguing and indicate that different (iodomethyl)zinc reagents (EtZnCH₂I, Zn(CH₂I)₂, or IZnCH₂I) may be involved in the methylene transfer process. Furthermore, the discrepancies between the selectivities observed under **Figure 1.** ¹H NMR spectra of a 1:1:1 mixture of Et₂Zn/CH₂I₂/DME in CD₂Cl₂ after (a) 5 min, (b) 40 min, and (c) 85 min. conditions B (Zn(CH₂I)₂) and C (IZnCH₂I) seem to indicate that the Schlenk equilibrium proposed in eq 1 may not be operative under these conditions. The data presented in Table 1 clearly indicate the importance of the stoichiometry of the reagents in Furukawa's protocol, and for the first time, they provide evidence of the unique reactivity of EtZnCH₂I. Furthermore, these results raised a number of previously unanswered fundamental questions regarding the structure of these various reagents, the possible equilibria between the reactive species, or the structure of various intermediates involved in these reactions. For these reasons, an extensive NMR study, aimed at characterizing and differentiating spectroscopically all the reagents involved in these reactions, was undertaken. EtZnCH₂I·DME Complex. The NMR studies were carried
out in the presence of an ether (1 or 2 equiv) using CD₂Cl₂ as the solvent. These conditions were chosen since they closely simulate those used in the various stereoselective cyclopropanation reactions developed in our laboratories. Coordinating groups, such as ether groups (or alkoxides), are necessary to stabilize the reagents and increase their lifetimes.¹⁴ Furthermore, low-temperature NMR can easily be performed under these conditions. The first surprising result is that the ¹H NMR of the reagent prepared from a 1:1 stoichiometry of Et₂Zn and CH₂I₂ (conditions A) displayed an unusually high number of resonances after a certain time (Figure 1). The formation of EtZnCH₂I appeared to be extremely rapid as evidenced by the formation of a ZnCH₂I resonance at 1.4 ppm and by the almost complete disappearance of CH₂I₂ at 3.9 ppm. However, we observed that "EtZnCH2I" partly underwent a rapid rearrangement at room temperature to produce PrZnI (Figure 1, signals B).¹⁵ This rearrangement occurred in less than 2 h and formed ca. 50 mol % PrZnI. On the basis of the integration, the remaining EtZn groups belong to EtZnI (ca. 90%) and EtZnCH₂I (10%). This methylene insertion (path B) and the methylene extrusion (path A) seem to be the two major paths for decomposition of EtZnCH₂I, and they appear to be fairly important and facile in the absence of an olefin (Scheme 1). To probe the effect of a zinc alkoxide on the rate of this methylene insertion, 2-methoxy-1-ethanol was treated with 2 equiv of Et₂Zn followed by 1 equiv of CH₂I₂. Figure 2 shows that this rearrangement is even faster in the presence of a zinc ⁽¹¹⁾ Presented in part at the 210th ACS National Meeting, Chicago, IL, Aug 20-24, 1995; paper ORGN 186. ⁽¹²⁾ The presence of an ethereal solvent is generally not suitable in these reactions since the reagent is considered to be "delivered" by the proximal hydroxy group (or zinc akoxide). Much lower diastereoselectivities are generally observed when they are carried out in ether, THF, or DME. ⁽¹³⁾ It is clear that the nature of the "ZnCH₂I" reagent in these reactions can vary as a function of time and of the reaction byproducts (for example, it is conceivable to imagine that Zn(CH₂I)₂ is converted into IZnCH₂I after the delivery of a first methylene group or that the aggregation state and nature of the zinc alkoxide may change as the reaction proceeds). The conditions reported in Table 1 that involved an excess of the reagents were chosen to favor a rapid cyclopropanation reaction mediated by mainly one "ZnCH₂I"-derived reagent. ⁽¹⁴⁾ Extensive decomposition and formation of a precipitate are observed if these studies are carried out in the absence of a complexing agent. ⁽¹⁵⁾ This correlation was established by comparison with authentic PrZnI prepared from PrI and activated zinc. The singlet at 0.85 ppm corresponds to ethane. ### Scheme 1 **Figure 2.** ¹H NMR spectrum of a 1:2:1 mixture of 2-methoxy-1-ethanol/Et₂Zn/CH₂I₂ at 298 K after (a) 7 min and (b) 35 min. ## Scheme 2 alkoxide. The signals arising from the formation of PrZnI were already present after only 7 min. Conversely, the ZnCH₂I resonance (C) completely disappeared in less than 35 min (Figure 2b). On the basis of the integration, an equal mixture of the PrZnI and EtZnI was produced. This process is obviously very significant since zinc alkoxides are intermediates in numerous ZnEt₂/CH₂I₂-mediated stereoselective cyclopropanation reactions.⁹ **Zn(CH₂I)₂·THF and IZnCH₂I·THF Complexes.** Because of the relatively harsh conditions required to prepared IZnCH₂I using Zn/Cu couple and CH₂I₂^{1a} and of the little flexibility in the choice of the solvent that can be used (usually ether, THF, or DME), we sought alternative ways to prepare IZnCH₂I. The mildest and most flexible method was to generate it from EtZnI and CH₂I₂ by an alkyl group exchange. Although this reagent in ether has been used in the cyclopropanation of olefins, ¹⁶ the viability of the conversion was initially established independently (Scheme 2). Ethylzinc iodide and iodoethane were produced quantitatively when an equimolar amount of iodine was added to diethylzinc (Figure 3a).¹⁷ It has already been demonstrated by low-temperature NMR spectroscopy that **Figure 3.** ¹³C NMR (100 MHz) of the ZnR region of (a) EtZnI·THF at 273 K (obtained from Et₂Zn/I₂/THF (1:1:1)), (b) EtZnI·THF at 163 K (obtained from Et₂Zn/ZnI₂/THF (1:1:2)), (c) Et₂Zn·THF + Et₂Zn/ZnI₂/THF (2:1:3)), and (e) Et₂Zn·THF. ethylzinc iodide is not converted into a mixture of Et_2Zn and ZnI_2 in THF.¹⁸ In a similar way, EtZnI was also produced when equimolar amounts of Et_2Zn and ZnI_2 were mixed (Figure 3b). As expected, the addition of a second equivalent of Et_2Zn did not lead to any additional signal even at 223 K (Figure 3c). The CH_2Zn signal is, however, shifted downfield, averaging those of Et_2Zn and EtZnI. These observations are consistent with the postulate that there is a rapid exchange between alkyl groups of the diorganozinc and the organozinc halide.¹⁹ Signal separation began to occur when the temperature was lowered to 178 K, and both signals arising from EtZnI and Et_2Zn were cleanly observed at 163 K (Figure 3d). The spectrum of Et_2Zn is also provided for comparison (Figure 3e). The integration confirmed that the conversion of ZnI_2 into EtZnI was quantitative.²⁰ As expected, subsequent addition of diiodomethane to EtZnI produced (iodomethyl)zinc iodide quantitatively as evidenced by the formation of an additional equivalent of iodoethane (Figure 4, signals C) and a ZnCH₂I signal at 1.35 ppm (¹H) and -19 ppm (¹³C) (Figure 4). These observations are, therefore, not consistent with one of the postulates of Inouye stating that EtZnI reacts with CH₂I₂ to produce EtZnCH₂I since no EtZn signals could be detected by NMR. With this information in hand, the ¹H and ¹³C NMR spectra of the reagents prepared from a 1:2 mixture of Et₂Zn/CH₂I₂ (Zn- ⁽¹⁶⁾ For selected examples on the use of EtZnI as the precursor to the Simmons-Smith reagent, see: (a) Paquette, L. A.; Ham, W. H. *J. Am. Chem. Soc.* **1987**, *109*, 3025-3036. (b) Paquette, L. A.; Horn, K. A.; Wells, G. J. *Tetrahedron Lett.* **1982**, *23*, 259-262. ⁽¹⁷⁾ These experiments (Figures 3–7) were carried out in the presence of THF to solubilize EtZnI, $IZnCH_2I$, and $Zn(CH_2I)_2$. ⁽¹⁸⁾ Evans, D. F.; Fazakerley, G. V. J. Chem. Soc. A **1971**, 182–183. (19) Orrell, K. G.; Sik, V. Annu. Rep. NMR Spectrosc. **1993**, 27, 103–171. ⁽²⁰⁾ In that case, the ^{13}C NMR spectra were recorded under quantitative conditions with a delay (d1) of 20 s. The absence of a signal indicates that the conversion is $\geq 98\%$. **Figure 4.** (a) ¹H and (b) ¹³C NMR spectra at 158 K of IZnCH₂I·2THF in CD₂Cl₂ obtained from Et₂Zn/I₂/CH₂I₂/THF (1:1:1:2). **Figure 5.** ¹H NMR spectra of (a) IZnCH₂I·2THF and (b) Zn(CH₂I)₂·-2THF at 158 K. (CH₂I)₂) and from a 1:1 mixture of EtZnI/CH₂I₂ (IZnCH₂I) were recorded and compared. We found that the differentiation of the reagents by this NMR experiment was inconclusive on the basis of this data (Figures 5 and 6). Comparison of the ¹H and ¹³C spectra of both reagents did not allow any differentiation of the two species. Furthermore, a single broad signal for both ZnCH₂I resonances was observed by ¹³C NMR at 163 K if both preformed species were mixed in the presence of THF (Figure 7). Moreover, low-temperature NMR of the THF and DME complexes of the two crucial reagents (IZnCH₂I vs Zn(CH₂I)₂) did not allow separation of the NMR signals, and unambiguous differentiation could not be established. Finally, nothing could be concluded about the possible Schlenk-type conversion of $IZnCH_2I$ into $Zn(CH_2I)_2$ and ZnI_2 . To differentiate the species, their complexation with a non- C_2 -symmetric chiral diether, (1R)-exo,exo-2,3-dimethoxy-1,7,7- **Figure 6.** 13 C NMR spectra of (a) IZnCH₂I·2THF and (b) Zn(CH₂I)₂·-2THF at 158 K. **Figure 7.** (a) ¹³C NMR spectrum of a 1:1 mixture of Zn(CH₂I)₂·THF and IZnCH₂I·THF at 163 K. (b) Expansion of the ZnCH₂I region. trimethylbicyclo[2.2.1]heptane (3),8 was studied by low-temperature NMR. ## Zn(CH₂I)₂·Chiral Diether 3 and IZn(CH₂)I·Chiral Diether **3 Complexes.** In his extensive spectroscopic investigation of $Zn(CH_2I)_2$, Denmark has studied the behavior of the **3·**Zn- $(CH_2I)_2$ complex **7** by ^{13}C NMR in C_6D_6 and found that the two methylene groups displayed a single signal.⁸ In that respect, low-temperature NMR might allow us to slow the rapid equilibrium between the complexed and uncomplexed species and lead to a signal separation for the two diastereotopic CH_2 groups in **7**. Each one of the complexes **4–9** should display a unique spectrum at low temperature, thereby allowing their **Figure 8.** 13 C NMR spectra of $3\cdot$ ZnI₂ (**4**) at (a) 163 K, (b) 193 K, and (c) 300 K. differentiation. In the cases where R = R', only one complex is expected (4, 5, 7). Furthermore, the two diastereotopic groups (R, R') might be separable at low temperature in the case of complexes 5 and 7 only if the complexation—decomplexation equilibrium is slow on the NMR time scale. 19 Conversely, two diastereomeric complexes should be observed when $R \neq R'$ (6, 8, 9). The ¹³C NMR spectra of **3·**ZnI₂ (**4**) and the related complexes **5** and **6** were also recorded in CD₂Cl₂ at various temperatures ranging from 25 to -100 °C. (Figures 8–10).²¹ The **3·**ZnI₂ complex was prepared by treating the analogous Et₂Zn complex with 2 equiv of iodine. The ¹³C NMR displayed the appropriate number of carbon signals for the chiral ligand (12) along with EtI (produced as a byproduct)²² (Figure 8). As expected, the spectra recorded at various temperatures were very similar. The variable temperature ¹³C NMR spectra of **3**·ZnEt₂ (**5**) and **3**·EtZnI (**6**) are shown in Figures 9 and 10. Complex **5** displayed the appropriate number of signals, and more importantly, the resonances corresponding to the
diastereotopic ethyl groups of diethylzinc did not split even at 163 K. Lowering the temperature induced an upshield shift of *ca.* 5 ppm of the ZnCH₂ signal whereas the CH₃ signal overlaps with one of the CH₃ (ligand) resonances (*ca.* 12 ppm).²³ The ¹³C NMR spectra derived from complex **6** are rather interesting (Figure 10). In this case, we have the possible formation of two diastereomeric complexes **6a** and **6b**. The spectrum recorded at 298 K shows the appropriate number of signals. Quite interestingly, the ZnCH₂ signal was relatively broad at 298 and 273 K, indicating a possible equilibrium between several species (possibly between **3**·EtZnI and **3** + Figure 9. ^{13}C NMR spectra of $3{\cdot}{\rm Et_2Zn}$ (5) at (a) 163 K and (b) 298 K. **Figure 10.** ¹³C NMR spectra of **3**•EtZnI (**6**) at (a) 163 K, (b) 223 K, (c) 273 K, and (d) 298 K. EtZnI). This signal became very sharp at 223 K, and it shifted upfield by *ca.* 2 ppm. More importantly, only one of the two possible diastereomeric complexes **6a** and **6b** (>90%) appeared ⁽²¹⁾ Full-scale 1 H (+9 to -0.5 ppm) and/or 13 C (+120 to -30 ppm) NMR spectra are provided in the supporting information. ⁽²²⁾ It is interesting to note not only that the intensity of the EtI signals increased at lower temperature but also that small upshield shifts of the signals were observed. ⁽²³⁾ This upshield shift may be the result of the increasing concentration of $[3 \cdot \text{Et}_2 \text{Zn}]$ relative to [3] and $[\text{Et}_2 \text{Zn}]$. This equilibrium is however too rapid to be observed by NMR: see ref 19. **Figure 11.** Expansion of the ¹³C NMR spectrum of **3**·Zn(CH₂I)₂ (**7**) in CD₂Cl₂ at (a) 173 K, (b) 213 K, (c) 223 K, (d) 233 K, and (e) 253 K (ZnCH₂I region). **Figure 12.** Expansion of the 13 C NMR spectrum of $3 \cdot 1$ ZnCH₂I (**8**) in CD₂Cl₂ at (a) 163 K, (b) 193 K, (c) 233 K, and (d) 273 K (ZnCH₂I region). to be formed at low temperature.²⁴ The formation of only one complex may be due to the presence of nonbonded interactions between the *gem*-dimethyl groups of the chiral ligand and the RZn group when different R and R' groups are present. The formation of two complexes would be expected when both groups (R and R') are of comparable sizes (*vide infra*). With these data in hand, the NMR study of the cyclopropanating reagents was undertaken. Gratifyingly, low-temperature ¹³C NMR of the complex **7** in CD₂Cl₂ confirmed that coalescence occurred at 223 K. Two sharp singlets, resulting from the two diastereotopic CH₂ groups, were subsequently obtained at 173 K (Figure 11).²⁵ Furthermore, the chiral ligand resonances were not split at that temperature. This observation is consistent with the presence of a unique complex (Figure 11). Conversely, the ¹³C NMR of the IZnCH₂I complex displayed a single signal for the "ZnCH₂I" resonance under a wide range of temperatures (Figure 12). No trace of the related Zn(CH₂I)₂ or ZnI₂ complex (**7** or **4**) could be detected by NMR even at **Figure 13.** Expansion of the ¹³C NMR spectrum of a mixture of **3**·Zn(CH₂I)₂ (**7**) and **3**·IZnCH₂I (**8**) (7:3) in CD₂Cl₂ at 163 K (ZnCH₂I region). ### Scheme 3 temperatures as low as 163 K,²⁶ indicating that the Schlenk equilibrium (Scheme 3) lies on the side of $IZnCH_2I$ and not $Zn(CH_2I)_2 + ZnI_2$ under these conditions.^{27–29} Moreover, these two species (7 and 8) are both viable simultaneously and could be differentiated by low-temperature NMR (Figure 13). Addition of 0.3 equiv of complex 8 to a solution of complex 7 produced the two expected distinct signals at low temperature for both complexes.³⁰ Finally, the quantitative formation of $3 \cdot IZnCH_2I$ (8) was observed if stoichiometric amounts of $3 \cdot Zn(CH_2I)_2$ (7) and $3 \cdot ZnI_2$ (4) were mixed (Figure 14).³¹ These results are all consistent with the fact that the Schlenk equilibrium favors the formation of $IZnCH_2I$ instead of $Zn(CH_2I)_2$ and ZnI_2 under these conditions. **EtZnCH₂I·Chiral Diether 3 Complex.** The spectroscopic studies of Furukawa's reagent, "EtZnCH₂I", prepared by mixing stoichiometric amounts of Et₂Zn and CH₂I₂ in the presence of the chiral ligand **3**, were then undertaken. The low-temperature ¹³C NMR showed many additional resonances than those (28) It is sowewhat surprising to observe a single resonance for $ZnCH_2I$ in this spectrum. We think that a single diastereomeric complex, $\bf 8$, is formed with $IZnCH_2I$ since none of the chiral ligand resonances are split upon decreasing the temperature. This is probably due to the large difference in the steric bulk of the two groups attached to the zinc. This phenomenon has also been observed with the related $EtZnI\cdot \bf 3$ ($\bf 6$) complex. (29) A small peak at -17.2 ppm appeared at 163 K, but it is not clear at this point whether this is the other diastereomeric complex or other related species (such as the monodentate ether complex). (30) Obviously, this does not imply that the three CH₂I groups are not exchangeable at higher temperature. (31) The signal at -20.3 ppm corresponds to CH₃I formed either by decomposition of the reagents or by the reaction between the reagents and traces of moisture. ⁽²⁴⁾ None of the chiral ligand signals were split upon cooling which is also consistent with the presence of only one diastereomeric complex. ⁽²⁵⁾ The downfield shift of the signal (or the average of the split signals) is consistent with the fact that the concentration of the complexed species increases upon cooling due to entropic reasons. This behavior has been observed with all the complexes studied. ⁽²⁶⁾ Freezing of the solution occurred below that temperature. ⁽²⁷⁾ For discussion of the Schlenk equilibria of alkylzinc halide species, see: (a) Garrett, A. B.; Sweet, A.; Marshall, W. L.; Riley, D.; Touma, A. Rec. Chem. Prog. 1952, 13, 155. (b) Dessy, R. E.; Coe, G. R. J. Org. Chem. 1963, 28, 3592—3593. (c) Boersma, J.; Noltes, J. G. Tetrahedron Lett. 1966, 1521—1525. (d) Abraham, M. H.; Rolfe, P. H. J. Organomet. Chem. 1967, 7, 35—43. (e) Evans, D. F.; Wharf, I. J. Chem. Soc. A 1968, 783—787. (f) Evans, D. F.; Fazakerley, G. V. J. Chem. Soc. A 1971, 182—183. **Figure 14.** (a) 13 C NMR spectrum of $3\cdot IZnCH_2I$ (8) prepared from $3\cdot Zn(CH_2I)_2$ (7) and $3\cdot ZnI_2$ (4) (1:1) at 163 K. (b) Expansion of the $ZnCH_2I$ region. expected for EtZnCH₂I (Figure 15). It was clear that a significant amount is of **3**·Zn(CH₂I)₂ (Figure 15, signals C) and **3**·Et₂Zn (Figure 15, signals D) were also present and obviously formed via the equilibrium shown in eq 2. Coalescence occurred $$2EtZnCH2I \rightleftharpoons Zn(CH2I)2 + Et2Zn$$ (2) at ca. 180 K for the EtZnCH₂I complexes. The signals at -1.0 and -3.0 ppm correspond to the methyl groups in EtZnCH₂I, whereas those at -12.0 and -14.0 ppm are consistent for both ZnCH₂I resonances. The coalescence temperature of the EtZnCH₂I complexes was lower than that of the related Zn-(CH₂I)₂ complex which is consistent with the former's weaker Lewis acidity. The addition of the $3\cdot ZnEt_2$ complex to the related $Zn(CH_2I)_2$ complex produced the same pattern of NMR signals as that obtained in Figure 15 (Figure 16). This control experiment further confirms the equilibrium shown in eq 2. **Decomposition of 3·Zn(CH₂I)₂ and 3·1ZnCH₂I.** Since it is fairly well-established that these very reactive ZnCH₂I species decompose on standing, we felt that we should be able to monitor that decomposition by NMR spectroscopy using this system.³² It is expected that **3·Zn(CH₂I)₂** should initially decompose into **3·1ZnCH₂I** (Scheme 4). In the same way, **3·IZnCH₂I** should eventually decompose into **3·ZnI₂** upon standing at room temperature. ### Scheme 4 $$3\cdot Zn(CH_2I)_2(7) \rightarrow 3\cdot IZnCH_2I(8) \rightarrow 3\cdot ZnI_2(4)$$ This clean decomposition could easily be followed by NMR simply by leaving a solution of **8** at room temperature for a certain time and by recooling it to 163 K to record the NMR spectrum. Figure 17 shows that complex **7** was completely **Figure 15.** $^{13}\mathrm{C}$ NMR spectra (100 MHz) of a 1:1:1 mixture of **3** Et₂-Zn/CH₂I₂ at (a) 163 K, (b) 173 K, (c) 183 K, (d) 193 K, and (e) 203 K (expansion of the RZn region). converted into a mixture of complex **8** and **4** after 5 h at room temperature. Conversely, complex **8** quantitatively decomposed into complex **4** in less than 1 h at 313 K (Figure 18).³³ These experiments further demonstrate that the chemistry of ZnCH₂I-derived reagents is relatively simple and that the presence of all these different species can be easily monitored by low-temperature ¹³C NMR spectroscopy. # Conclusion In conclusion, we have spectroscopically characterized EtZnCH₂I and IZnCH₂I, two reagents that display unique reactivities in stereoselective reactions. Futhermore, we have shown that the Schlenk equilibrium, illustrated in eq 1, appears to lie heavily on the side of IZnCH₂I and that none of the related ZnI₂ or Zn(CH₂I)₂ could be detected by ¹³C NMR spectroscopy in the presence of a chiral ether. It should be emphasized that the position of this equilibrium is obviously solvent-dependent.²⁷ The conditions chosen in this study were those that reflected best the one used in the various stereoselective cyclopropanation ⁽³²⁾ The decomposition of $Zn(CH_2I)_2$ into $IZnCH_2I$ was monitored by NMR (relative integration of the $ZnCH_2I$ signal), and the resulting species gave an elemental analysis consistent with a $IZnCH_2I$ complex (see ref 8b). ⁽³³⁾ The signal at 6 ppm is probably due to the presence of ethane arising from the decomposition of these species. **Figure 16.** (a) 13 C NMR spectra (100 MHz) of a 1:1 mixture of 3·Zn(CH₂I)₂ and 3·Et₂Zn at 163 K in CD₂Cl₂. (b) Expansion of the ZnCH₂I region. reactions developed in our laboratories. We have also demonstrated that the general trends observed in the various equilibria involving (iodomethyl)zinc-derived reagents follow those observed with
ethylzinc-derived organometallic compounds. These fundamental results will certainly be very useful in the elaboration of transition state models for the stereoselective cyclopropanation reactions. # **Experimental Section** **General Procedures.** All cyclopropanation reactions and NMR experiments were carried out under argon, using anhydrous, freshly distilled CH₂Cl₂ (dried over CaH₂), THF, and DME (dried over acetophenone ketyl). The diethylzinc was used neat, as received from Akzo Nobel Inc. and manipulated under argon with gas-tight syringes. The deuterated dichloromethane was used as received by MSD Isotopes. The cyclopropanation reactions were performed under nitrogen or argon. ¹H and ¹³C NMR spectra and variable temperature NMR experiments were performed on a Brucker AMX-300 or Brucker ARX-400 spectrometer in CDCl₃ or CD₂Cl₂. **Cyclopropanation of (***E***)-4-Phenyl-3-buten-2-ol (1) with EtZnCH₂I (Table 1, Entry 1, Conditions A).** To a solution of **1** (113 mg, 0.77 mmol) in anhydrous CH₂Cl₂ (7.65 mL) at 0 °C was slowly added Et₂-Zn (395 μL, 3.85 mmol).³⁴ After 5 min of stirring, CH₂I₂ (248 μL, 3.82 mmol, 4.0 equiv) was slowly added, and the reaction mixture was stirred for 1 h at 0 °C and 6 h at room temperature. The mixture was diluted with ether, washed with aqueous HCl (10%), brine, and aqueous NaHCO₃, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The diastereomeric ratios were determined by ¹H NMR (300 MHz) and GC analysis of the acetate derived from (*E*)-1-(1-hydroxyethyl)-2-phenylcyclopropane^{10j} (capillary GC: DB-1701 (0.25 mm × 30 m; pressure, 25 psi; 140 °C isotherm) $T_{r(major)}$ 11.3 min, $T_{r(minor)}$ 10.2 min) to give a *syn:anti* ratio of 7.0:1. *Syn* isomer: R_f 0.30 (25% AcOEt/75% hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.30-7.06 (m, 5H), 3.39 (dq, J = 8, 6 Hz, 1H), 1.85-1.79 (m, 1H), 1.67 (br s, 1H), 1.36 (d, J **Figure 17.** ¹³C NMR spectra (100 MHz) of the decomposition of $3 \cdot Zn(CH_2I)_2$ (7) as a function of time (163 K). = 6 Hz, 3H), 1.33–1.24 (m, 1H), 1.05–0.93 (m, 2H); 13 C NMR (100 MHz, CDCl₃) δ 142.6, 128.4, 126.0, 125.6, 71.3, 30.7, 22.8, 20.7, 13.9; IR (film) 3360 (br), 3080, 3030, 3000, 2980, 2930, 1600, 1500, 1470, 1410, 1370, 1100, 1080, 975, 940, 750, 690 cm⁻¹. *Anti* isomer: R_f 0.55 (25% EtOAc/75% hexane); 1 H NMR (300 MHz, CDCl₃) δ 7.30–7.08 (m, 5H), 3.40 (dq, J = 8, 6 Hz, 1H), 1.95–1.89 (m, 1H), 1.68 (s, 1H), 1.34 (d, J = 6 Hz, 3H), 1.34–1.25 (m, 1H), 0.98–0.90 (m, 2H); 13 C NMR (100 MHz, CDCl₃) δ 142.6, 128.2, 125.7, 125.5, 71.7, 30.7, 22.3, 21.2, 13.2; IR (film) 3360 (br), 3060, 3000, 2960, 2920, 1600, 1490, 1440, 1410, 1210, 1100, 1070, 1020, 970, 930, 740, 680 cm⁻¹. Cyclopropanation of (*E*)-4-Phenyl-3-buten-2-ol (1) with Zn-(CH₂I)₂ (Table 1, Entry 2, Conditions B). To a solution of 1 (109 mg, 0.73 mmol) in anhydrous CH₂Cl₂ (7.30 mL) at 0 °C was slowly added Et₂Zn (375 μ L, 3.66 mmol). After 5 min of stirring at that temperature, CH₂I₂ (475 μ L, 5.90 mmol) was then slowly added, and the reaction mixture was stirred for 1 h at 0 °C and 6 h at room temperature. The mixture was diluted with ether, washed with aqueous HCl (10%), brine, and aqueous NaHCO₃, dried over MgSO₄, and concentrated under reduced pressure. The GC analysis of the acetylated products with the conditions described above gave a *syn:anti* diastereomeric ratio of 3.6:1. Cyclopropanation of (*E*)-4-Phenyl-3-buten-2-ol (1) with Zn-(CH₂I)₂ (Table 1, Entry 3, Conditions C). To a solution of 1 (100 mg, 0.68 mmol) in anhydrous CH₂Cl₂ (6.80 mL) at 0 °C was added iodine (696 mg, 2.74 mmol) followed by Et₂Zn (350 μ L, 3.41 mmol). After the iodine was completely consumed, CH₂I₂ (220 μ L, 2.73 mmol) was slowly added, and the reaction mixture was stirred for 1 h at 0 °C and 6 h at room temperature. The mixture was then diluted with ether, washed with aqueous HCl (10%), brine, and aqueous NaHCO₃, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The GC analysis of the acetylated products with the conditions described above gave a *syn:anti* diastereomeric ratio of 1.2:1. ⁽³⁴⁾ The formation of the zinc alkoxide and ethane is instantaneous at that temperature as observed by low-temperature NMR: Côté, B. Ph.D. Thesis, Université de Montréal, 1994. **Figure 18.** ¹³C NMR spectra of (a) **3·**ZnI₂ (**4**), (b) **3·**IZnCH₂I (**8**) after 3.5 h at 298 K and 1 h at 313 K, and (c) **3·**IZnCH₂I (**8**) after 1.5 h at 298 k. Cyclopropanation of 1-O-[2'-[[(Triisopropylsilyl)oxy]methyl]-2'penten-1'-yl]-3,4,6-tri-O-benzyl-β-D-glucopyranose (2) with EtZnCH₂I (Table 1, entry 4, conditions A). To a solution of 2 (54 mg, 0.077 mmol) in anhydrous CH₂Cl₂ (640 µL) at room temperature was slowly added Et₂Zn (87 μ L, 0.85 mmol). After 5 min of stirring at 0 °C, the solution was cooled to -20 °C. A solution of CH₂I₂ in CH₂Cl₂ (450 μ L, 1.71 M, 0.77 mmol) was then slowly added, and the reaction mixture was stirred at -20 °C for 16 h. The mixture was diluted with ether, washed with aqueous HCl (10%), brine, and aqueous NaHCO₃, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The diastereomeric ratios were determined by ¹H NMR (300 MHz) and HPLC analysis of the crude mixture (HPLC: 4 µm NOVA-PAK $(8 \times 200 \text{ mm}; 8\% \text{ EtOAc/hexane.}; 1 \text{ mL/min}) T_{\text{r(major)}} 15.7 \text{ min}, T_{\text{r(minor)}}$ 20.4 min) to give a ratio of 47:1. Major isomer: R_f 0.3 (10% EtOAc/ hexane); $[\alpha]_D - 11.7^\circ$ (c 1.95, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.21 (m, 15H), 5.02 (d, J = 11 Hz, 1H), 4.89 (d, J = 11 Hz, 1H), 4.86 (d, J = 11 Hz, 1H), 4.65 (d, J = 12 Hz, 4H), 4.60 111 Hz, 1H), 4.58 (d, J = 12 Hz, 1H), 4.36 (d, J = 7 Hz, 1H), 3.95 (d, J = 11 Hz, 1H, 3.82 - 3.72 (m, 4H), 3.66 - 3.59 (m, 3H), 3.50 (d, J = 0.000 m)10 Hz, 1H), 3.52-3.49 (m, 1H), 2.53 (s, 1H), 1.53-1.36 (m, 2H), 1.17-1.05 (m, 21H), 1.02 (t, J = 7 Hz, 3H), 0.81–0.76 (m, 1H), 0.71 (dd, $J = 9, 5 \text{ Hz}, 1\text{H}, 0.23 \text{ (t, } J = 5 \text{ Hz}, 1\text{H}); ^{13}\text{C NMR } (75 \text{ MHz}, \text{CDCl}_3)$ δ 138.7, 138.2, 138.1, 128.2, 128.2, 128.2, 127.8, 127.8, 127.6, 127.5, 127.4, 127.4, 102.5, 84.4, 77.5, 75.2, 74.9, 74.9, 74.8, 73.4, 69.6, 68.9, 67.4, 26.4, 22.8, 22.0, 17.9, 14.7, 14.2, 11.9; IR (film) 3460 (br), 3020, 2940, 2860, 1490, 1450, 1360, 1100 (br), 875, 780, 740, 690 cm⁻¹. Cyclopropanation of 1-O-[2'-[[(Triisopropylsilyl)oxy]methyl]-2'-penten-1'-yl]-3,4,6-tri-O-benzyl- β -D-glucopyranose (2) with Zn-(CH₂I)₂ (Table 1, Entry 5, Conditions B). To a solution of 2 (48 mg, 0.068 mmol) in anhydrous CH₂Cl₂ (570 μ L) at room temperature was slowly added Et₂Zn (42 μ L, 0.41 mmol), and after 5 min of stirring, the solution was cooled to -20 °C. A solution of CH₂I₂ in CH₂Cl₂ (400 μ L, 1.7 M, 0.68 mmol) was then slowly added, and the reaction mixture was stirred for 16 h at -20 °C. The mixture was diluted with ether, washed with aqueous HCl (10%), brine, and aqueous NaHCO₃, dried over anhydrous $MgSO_4$, and concentrated under reduced pressure. The analysis of the crude mixture by HPLC with the conditions described above gave a diastereomeric ratio of 27:1. Cyclopropanation of 1-O-[2'-[[(Triisopropylsilyl)oxy]methyl]-2'-penten-1'-yl]-3,4,6-tri-O-benzyl- β -D-glucopyranose (2) with IZnCH₂I (Table 1, Entry 6, Conditions C). To a solution of 2 (51 mg, 0.073 mmol) in anhydrous CH₂Cl₂ (600 μ L) at -20 °C was added iodine (185.0 mg, 0.73 mmol) followed by Et₂Zn (82 μ L, 0.80 mmol). After the iodine was completely consumed, a solution of CH₂I₂ in CH₂Cl₂ (425 μ L, 1.7 M, 0.73 mmol) was slowly added, and the reaction mixture was stirred for 16 h at -20 °C. The mixture was diluted with ether and washed with aqueous HCl (10%), brine, and aqueous NaHCO₃, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The analysis of the crude mixture by HPLC with the conditions described above gave a diastereomeric ratio of 4.6:1. **Preparation and NMR Study of EtZnCH₂I-DME (Figure 1).** In a vacuum-dried NMR tube sealed with a septum and Teflon tape and purged several times with argon were placed CD₂Cl₂ (0.70 mL), dimethoxyethane (25 μ L, 0.32 mmol), and Et₂Zn (33 μ L, 0.32 mmol). The NMR tube was cooled to -40 °C, and a solution of CH₂I₂ (23.0 μ L, 0.29 mmol, 0.90 equiv) in CD₂Cl₂ (0.70 mL) was then slowly added in five portions with shaking of the tube between each addition. The NMR spectra were then recorded and are shown in Figure 1: ¹H NMR (400 MHz, CDCl₃) δ 3.61 (br s, 4H), 3.44 (br s, 6H), 1,42 (br s, 2H), 1.04 (t, J = 11 Hz), 0.29 (q, J = 11 Hz). **Preparation and NMR Study of CH₃OCH₂CH₂OZnEt·EtZnCH₂I (Figure 2).** To a vacuum-dried NMR tube sealed with a septum and Teflon tape and purged several times with argon were added at room temperature CD₂Cl₂ (0.70 mL), 2-methoxyethanol (25 μ L, 0.32 mmol), and Et₂Zn (65 μ L, 0.64 mmol). After 10 min at room temperature, the NMR tube was cooled to -40 °C. A solution of CH₂I₂ (23.0 μ L, 0.29 mmol) in CD₂Cl₂ (0.70 mL) was then slowly added in five portions, and the tube was shaken between each addition. The NMR tube was then directly transferred into the NMR probe for the analysis shown in Figure 2: ¹H NMR (400 MHz, CDCl₃) δ 4.04-4.00 (m, 2H), 3.66-3.60 (m, 2H), 3.53 (br s, 3H), 1,52 (br s, 2H), 1.16 (t, J = 8 Hz, 6H), 0.29 (q, J = 8 Hz, 4H). Formation and NMR Study of the EtZnI·THF Complex (Figure 3). In a vacuum-dried NMR tube was placed iodine (122 mg, 0.48 mmol), and the tube was sealed with a septum and Teflon tape and was purged several times with argon. CD₂Cl₂ (0.70 mL) and THF (39.0 μ L, 0.48 mmol) were added via a syringe. The solution was cooled to -40 °C, and Et₂Zn (49.0 μ L, 0.48 mmol) was added. The solution was allowed to reach 0 °C in order to completely consume the iodine. The NMR tube was then directly transferred to the precooled NMR probe for the study shown in Figure
3a: ¹H NMR (400 MHz, CD_2Cl_2 , 273 K) δ 4.02-3.98 (m, 4H, THF), 3.18 (q, J = 7 Hz, 2H, EtI), 2.00-1.96 (m, 4H, THF), 1.80 (t, J = 7 Hz, 3H, EtI), 1.08 (t, J= 8 Hz, 3H), 0.31 (q, J = 8 Hz, 3H); ¹³C NMR (100 MHz, CD₂Cl₂, 273 K) δ 70.3 (THF), 25.5 (THF), 20.7 (CH₃CH₂I), 12.3, 4.5, 0.07 (CH_3CH_2I) ; ¹³C NMR (100 MHz, CD_2Cl_2 , 163 K) δ 69.6 (THF), 24.9 (THF), 19.9 (CH₃CH₂I), 12.0, 2.6, 1.69 (CH₃CH₂I). In the case of Figure 3b, the NMR tube was prepared as described above except that Et₂Zn (45 μ L, 0.44 mmol) was mixed with ZnI₂ (140 mg, 0.44 mmol). In the case of Figure 3c,d, an additional equivalent of Et₂Zn (45 μ L, 0.44 mmol) was added. **Preparation and NMR Study of the Et₂Zn·THF Complex (Figure 3e).** The NMR tube was prepared as described for the EtZnI·THF complex except that it was done at 0 °C and that the addition of iodine was omitted: 1 H NMR (400 MHz, CD₂Cl₂, 298 K) δ 3.77–3.73 (m, 4H, THF), 1.84–1.88 (m, 4H, THF), 1.15 (t, J=8 Hz, 3H), 0.24 (q, J=8 Hz, 3H); 13 C NMR (100 MHz, CD₂Cl₂, 298 K) δ 68.3 (THF), 26.0 (THF), 10.7, 6.0. Formation and NMR Study of the IZnCH₂I·THF Complex (Figures 4, 5a, and 6a). In a vacuum-dried NMR tube was placed iodine (225 mg, 0.89 mmol), and the tube was sealed with a septum and Teflon tape, and purged several times with argon. CD₂Cl₂ (1.30 mL) and THF (142 μ L, 1.75 mmol) were added via a syringe. The solution was cooled to -40 °C, and Et₂Zn (90 μ L, 0.88 mmol) was added. The NMR tube was shaken, and the solution was allowed to reach 0 °C to completely consume the iodine. The clear solution was then cooled to -78 °C, and CH₂I₂ (71 μ L, 0.88 mmol) was then slowly added. The NMR tube was then directly transferred to the precooled NMR probe for the study shown in Figures 4, 5a, and 6a: 1 H NMR (400 MHz, CD₂Cl₂, 158 K) δ 3.95–3.83 (m, 8H, THF), 1.95–1.84 (m, 8H, THF), 1.34 (br s, 2H); 13 C NMR (100 MHz, CD₂Cl₂, 158 K) δ 69.7 (THF), 24.7 (THF), 19.8 (*C*H₃CH₂I), 1.8 (*C*H₃*C*H₂I), -17.4. Formation and NMR Analysis of the Zn(CH₂I)₂·THF Complex (Figures 5b and 6b). To a vacuum-dried NMR tube sealed with a septum and Teflon tape and purged several times with argon were added at room temperature CD₂Cl₂ (1.30 mL), THF (142 μ L, 1.75 mmol), and CH₂I₂ (142.0 μ L, 1.76 mmol). The NMR tube was cooled to -78 °C, and Et₂Zn (90 μ L, 0.88 mmol) was then slowly added. The tube was then warmed to room temperature for about 20 s to dissolve the white precipitate and then cooled back to -78 °C. The NMR tube was then directly transferred to the precooled NMR probe for the study shown in Figures 5b and 6b: 1 H NMR (400 MHz, CD₂Cl₂, 158 K) δ 3.81–3.65 (m, 8H), 1.88–1.74 (m, 8H), 1.33–1.18 (m, 4H); 13 C NMR (100 MHz, CD₂Cl₂, 158 K) δ 68.7 (THF), 24.8 (THF), 19.8 (CH₃-CH₂I), 1.8 (CH₃-CH₂I), -17.3. Formation of a Mixture of IZnCH₂I·THF and Zn(CH₂I)₂·THF (Figure 7). The complexes were independently prepared as described above and were transferred into a dry NMR tube via a Teflon cannula under argon at -78 °C. The NMR tube was then directly transferred to the precooled NMR probe for the study shown in Figure 7. Formation and NMR Analysis of the (1R)-exo,exo-2,3-Dimethoxy-1,7,7-trimethylbicyclo[2.2.1]heptane•Zinc Iodide Complex (4) (Figure 8). Diether 3 (68 mg, 0.35 mmol) and iodine (175 mg, 0.69 mmol) were placed in a vacuum-dried NMR tube. The tube was then sealed with a septum and Teflon tape and purged with argon. CD_2Cl_2 (1.30 mL) was added via a dried syringe, and the NMR tube was cooled to -78 °C. Neat Et₂Zn (35.0 μ L, 0.35 mmol) was then slowly added, and the tube was allowed to reach room temperature until there was a complete disappearance of iodine. The solution was then placed in the NMR probe for analysis: 1 H NMR (400 MHz, CD_2Cl_2 , 298 K) δ 3.89 (d, J = 7 Hz, 1H), 3.75 (s, 3H), 3.70 (d, J = 7 Hz, 1H), 3.56 (s, 3H), 2.09 (d, J = 5 Hz, 1H), 1.85-1.74 (m, 1H), 1.52 (dt, J = 5, 12 Hz, 1H), 1.10 (t, J = 8 Hz, 3H), 1.07 (s, 3H), 1.03 (s, 3H), 0.88-1.02 (m, 2H), 0.82 (s, 3H), 0.24 (q, J = 8 Hz, 2H); 13 C NMR (100 MHz, CD_2Cl_2 , 298 K) δ 90.8, 86.5, 62.3, 58.0, 50.3, 47.4, 45.3, 23.4, 20.1, 13.4, 3.9. NMR Spectra of the (1*R*)-exo,exo-2,3-Dimethoxy-1,7,7-trimethylbicyclo[2.2.1]heptane·Diethylzinc Complex (5) (Figure 9). Diether 3 (98 mg, 0.49 mmol) was placed in a vacuum-dried NMR tube sealed with a septum and Teflon tape and purged with argon. CD₂Cl₂ (1.30 mL) and Et₂Zn (50 μ L, 0.49 mmol) were added via a dried syringe. The solution was then placed in the NMR probe for analysis: ¹H NMR (400 MHz, CD₂Cl₂, 298 K) δ 3.45–3.22 (m, 1H), 3.43 (br s, 3H), 3.37 (s, 3H), 3.21 (d, J=7 Hz, 1H), 1.87 (d, J=5 Hz, 1H), 1.74–1.66 (m, 1H), 1.49 (dt, J=4, 12 Hz, 1H), 1.15 (br t, J=8 Hz, 6H), 1.11–0.88 (m, 2H), 1.09 (s, 3H), 0.94 (s, 3H), 0.81 (s, 3H), 0.25 (q, J=4, 8 Hz, 4H); ¹³C NMR (100 MHz, CD₂Cl₂, 298 K) δ 91.2, 87.5, 60.7, 57.9, 49.7, 47.8, 46.9, 34.2, 24.4, 21.3, 20.7, 11.8, 10.7, 5.8. NMR Spectra of the (1R)-exo,exo-2,3-Dimethoxy-1,7,7-trimethylbicyclo[2.2.1]heptane·Ethylzinc Iodide Complex (6) (Figure 10). Diether 3 (123 mg, 0.62 mmol) and iodine (157 mg, 0.62 mmol) were placed in a vacuum-dried NMR tube. The tube was then sealed with a septum and Teflon tape and purged with argon. CD₂Cl₂ (1.00 mL, 0.62 M) was added via a dried syringe, and the NMR tube was cooled to -78 °C. Neat Et₂Zn (49 μ L, 0.48 mmol) was then slowly added, and the tube was allowed to reach room temperature until there was a complete disappearance of the iodine to form a homogeneous, colorless solution. The solution was then placed in the NMR probe for analysis: ¹H NMR (400 MHz, CD₂Cl₂, 298 K) δ 3.80 (d, J = 7 Hz, 1H), 3.66 (br s, 3H), 3.61 (d, J = 7 Hz, 1H), 3.50 (br s, 3H), 2.05 (d, J = 5 Hz, 1H), 1.80–1.70 (m, 1H), 1.50 (dt, J = 5, 12 Hz, 1H), 1.09 (t, J = 8 Hz, 3H), 1.06 (s, 3H), 1.03 (s, 3H), 1.02 - 0.91 (m, 2H), 0.82(s, 3H), 0.23 (q, J = 8 Hz, 2H); ¹³C NMR (100 MHz, CD₂Cl₂, 298 K) δ 90.8, 86.5, 62.3, 58.0, 50.3, 47.4, 45.3, 23.4, 21.2, 20.8, 20.1, 13.4, 12.0, 3.9. -0.3; ¹³C NMR (100 MHz, CD₂Cl₂) δ (ZnCH₂CH₃) (223 K) 2.8 (br), (223 K) 2.1, (163 K) 1.5; δ (ZnCH₂CH₃) (223 K) 12.0, (223 K) 11.8, (163 K) 11.6. NMR Spectra of the (1*R*)-exo,exo-2,3-Dimethoxy-1,7,7-trimethylbicyclo[2.2.1]heptane·Bis(iodomethyl)zinc Complex (7) (Figure 11). Diether 3 (78 mg, 0.39 mmol) was placed in a NMR tube, and the tube was sealed with a septum and Teflon tape and purged several times with argon. CD_2Cl_2 (0.70 mL) and CH_2I_2 (64 μ L, 0.78 mmol) were successively added via a syringe. The NMR tube was cooled to -78 °C, and Et₂Zn (40 μ L, 0.39 mmol) was then slowly added. The tube was warmed to room temperature (ca. 20 s) to completely dissolve the white precipitate and was cooled back to -78 °C. The NMR tube was then directly transferred to the precooled NMR probe for analysis: ¹H NMR (400 MHz, CD₂Cl₂, 273 K) δ 3.79 (d, J = 7 Hz, 1H), 3.59 (s, 3H), 3.56-3.53 (m, 1H), 3.53 (s, 3H), 1.97 (d, J = 5 Hz, 1H), 1.72–1.61 (m, 1H), 1.45 (dt, J = 4, 12 Hz, 1H), 1.38–1.32 (m, 4H), 1.05-0.86 (m, 2H), 0.98 (s, 3H), 0.97 (s, 3H), 0.75 (s, 3H); ¹H NMR (400 MHz, CD₂Cl₂, 173 K) δ 3.86–3.81 (m, 1H), 3.55 (s, 3H), 3.56-3.50 (m, 1H), 3.51 (s, 3H), 1.95-1.93 (m, 1H), 1.64-1.54 (m, 1H), 1.45–1.32 (m, 3H), 1.17–1.11 (m, 2H), 1.14 (s, 3H), 1.00–0.80 (m, 2H), 0.93 (s, 3H), 0.85 (s, 3H); 13C NMR (100 MHz, CD₂Cl₂, 253 K) δ 90.9, 87.1, 61.6, 58.5, 49.8, 46.9, 45.2, 33.1, 23.4, 21.0 (CH₃-CH₂I), 20.6, 19.9, 11.9, 0.4 (CH₃CH₂I), -17.8; ¹³C NMR (100 MHz, CD_2Cl_2 , 173 K) δ 89.8, 86.5, 61.0, 58.2, 49.2, 46.5, 43.8, 31.8, 22.5, 20.3, 20.0 (CH₃CH₂I), 19.2, 11.4, 11.9, 1.7 (CH₃CH₂I), -15.1, -17.4; ¹³C NMR (100 MHz, CD₂Cl₂) δ (Zn(CH₂I)₂) (173 K) -15.1, -17.4, (193 K) - 15.6, -17.8, (203 K) - 15.8 (br), -18.0, (br), (213 K) - 16.1(br), -18.1 (br), (223 K) -17.4 (coalescent), (233 K) -17.5 (br), (253 K) -17.8. NMR Spectra of (1R)-exo,exo-2,3-Dimethoxy-1,7,7-trimethylbicyclo[2.2.1]heptane (Iodomethyl)Zinc Iodide (8) (Figure 12). Diether 3 (95 mg, 0.48 mmol) and iodine (122 mg, 0.48 mmol) were placed in a vacuum-dried NMR tube. The tube was then sealed with a septum and Teflon tape and purged with argon. CD₂Cl₂ (0.70 mL) was added via a dried syringe, and the NMR tube was cooled to -78°C. Neat Et₂Zn (49 μ L, 0.48 mmol) was then slowly added, and the tube was allowed to reach room temperature until there was a complete disappearance of the iodine to form a colorless solution. CH₂I₂ (39 μ L, 0.48 mmol) was then added at -78 °C. The NMR tube was directly transferred to the precooled NMR probe for analysis: ¹H NMR (400 MHz, CD_2Cl_2 , 273 K) δ 3.84 (d, J = 7 Hz, 1H), 3.73 (s, 3H), 3.66 (d, J= 7 Hz, 1H), 3.60 (s, 3H), 2.07 (d, J= 5 Hz, 1H), 1.84–1.70 (m, 1H), 1.51 (dt, J = 4, 12 Hz, 1H), 1.42 (br s, 2H), 1.06 (s, 3H), 1.03 (s, 3H), 0.98-0.79 (m, 2H), 0.81 (s, 3H); ¹H NMR (400 MHz, CD₂Cl₂, 163 K) δ 3.72 (br d, J = 7 Hz, 1H), 3.64 (br s, 3H, 3.58 (br d, J = 7Hz. 1H.), 3.53 (br s. 3H), 2.05-2.00 (m, 1H), 1.70-1.59 (m, 1H), 1.45-1.32 (m, 3H), 1.05-0.70 (m, 2H), 0.98 (br s, 3H), 0.88 (br s, 3H), 0.70 (br s, 3H); 13 C NMR (100 MHz, CD₂Cl₂, 163 K) δ 88.7, $84.9,\ 62.7,\ 59.0,\ 49.1,\ 46.6,\ 43.4,\ 31.6,\ 22.0,\ 19.9\ (\hbox{\it CH$_3$CH$_2$I}),\ 19.6,$ 11.5, 1.9 (CH₃CH₂I), -19.3; ¹³C NMR (100 MHz, CD₂Cl₂) δ (ZnCH₂I) (163 K) -19.3, (193 K) -19.5, (233 K) -19.6, (273 K) -19.8. Preparation of a Mixture of 3·IZnCH₂I and 3·Zn(CH₂I)₂ (Figure 13). The complexes 3·IZnCH₂I and 3·Zn(CH₂I)₂ were independently prepared as described above and were transferred into a dry NMR tube via a Teflon cannula under argon at -78 °C. The NMR tube was then directly transferred to the precooled NMR probe for analysis. **Preparation of 3·IZnCH₂I from 3·Zn(CH₂I)₂ and 3·ZnI₂ (Figure 14).** The complexes $3\cdot$ Zn(CH₂I)₂ and $3\cdot$ ZnI₂ were independently prepared as
described above, and equimolar amounts were transferred into a dry NMR tube via a Teflon cannula under argon at -78 °C. The NMR tube was then directly transferred to the precooled NMR probe for analysis. NMR Spectra of (1R)-exo,exo-2,3-Dimethoxy-1,7,7-trimethylbicyclo[2.2.1]heptane · (Iodomethyl)ethylzinc (9) (Figure 15). Diether 3 (79 mg, 0.40 mmol) was placed in a vacuum-dried NMR tube sealed with a septum and Teflon tape and purged with argon. CD₂Cl₂ (0.70 mL) and CH₂I₂ (32 μL, 0.40 mmol) were then successively added via purged syringes. The NMR tube was cooled to -78 °C, and neat Et₂-Zn (41 μ L, 0.40 mmol) was then slowly added. The white precipitate was allowed to dissolve by shaking the tube at room temperature for about 20 s, and it was then cooled back to $-78~^{\circ}\text{C}$. The NMR tube was directly transferred to the precooled NMR probe for analysis: ¹H NMR (400 MHz, CD_2Cl_2 , 273 K) δ 3.66-3.62 (m, 1H), 3.53 (br s, 3H), 3.47-3.39 (m, 1H), 3.46 (s, 3H), 1.97-1.92 (m, 1H), 1.74-1.64 (m, 1H), 1.46 (dt, J = 4, 12 Hz, 1H), 1.38 (dd, J = 11, 14 Hz, ca. 1H), 1.33 (m, ca. 1H), 1.10 (br t, J = 8 Hz, 3H), 1.05–0.86 (m, 2H), 1.01 (s, 3H), 0.97 (s, 3H), 0.77 (s, 3H), 0.35-0.01 (m, 2H); ¹³C NMR (100 MHz, CD₂Cl₂, 203 K) δ 89.9, 86.1, 60.1, 57.4, 49.2, 46.5, 44.5, 32.6, 23.0, 20.6, 20.0 (CH₃CH₂I), 19.4, 12.3, 11.7, 11.3, 4.5, 1.1 (CH₃CH₂I), $-1.5,\,-13.3,\,-16.0,\,-18.1;\,^{13}\mathrm{C}$ NMR (100 MHz, CD₂Cl₂, 163 K) δ 89.7, 89.3, 89.1, 86.5, 85.8, 85.5, 60.9, 60.7, 60.1, 58.2, 57.5, 57.1, 49.1, 46.5, 46.2, 43.8, 43.7, 43.5, 31.9, 31.8, 22.5, 20.8, 20.3, 20.2, 20.0 (CH₃CH₂I), 19.1, 19.0, 12.3, 11.6, 11.5, 2.5, 1.8 (CH₃CH₂I), -1.0, -3.0, -12.0, -13.7, -15.1, -17.5; 13 C NMR (100 MHz, CD₂Cl₂) δ ((CH₃CH₂)₂Zn) (163 K) 2.5, (173 K) 3.0, (183 K) 3.5, (193 K) 4.0, (203 K) 4.5; δ (CH₃CH₂ZnCH₂I) (163 K) -12.0, -13.7, (173 K) -12.2 (br), -13.7 (br), (183 K) -13.3 (coalescent), (193 K) -13.2 (br), (203 K) -13.3; δ (CH₃CH₂ZnCH₂I) (163 K) -1.0, -3.0, (173 K) -0.9 (br), -2.8 (br), (183 K) -2.2 (coalescent), (193 K) -1.5 (br), (203 K) -1.5; δ (Zn(CH₂I)₂) (163 K) -15.1, -17.5, (173 K) -15.3, -17.7, (183 K) -15.6, -17.9, (193 K) -15.8 (br), -18.1 (br), (203 K) -16.0 (br), -18.1 (br). Formation of 3·EtZnCH₂I from 3·Zn(CH₂I)₂ and 3·Et₂Zn (Figure 16). The complexes $3\cdot$ Zn(CH₂I)₂ and $3\cdot$ Et₂Zn were independently prepared as described above, and equimolar amounts were transferred into a dry NMR tube via a Teflon cannula under argon at -78 °C. The NMR tube was then directly transferred to the precooled NMR probe for analysis. **Decomposition of 3·Zn(CH₂I)₂ and 3·IZnCH₂I (Figures 17 and 18).** A solution of **3·Zn(CH₂I)₂ or 3·IZnCH₂I₂ in CD₂Cl₂ was prepared in a NMR tube as described above. The solution was kept at room temperature for the specified time and was placed in the NMR probe** precooled to 163 K for analysis. The tube was then kept at room temperature for a another specified time before the next analysis. Acknowledgment. This research was supported by the NSERC (Canada), FCAR (Québec), Merck Frosst Canada, Eli Lilly, Servier, and the Université de Montréal. J.F.M. thanks NSERC and FCAR for postgraduate fellowships. We are also grateful to the Centre Régional de Spectroscopie NMR for their assistance in carrying out NMR experiments. We would like to thank Dr. Martine Monette for many helpful discussions. **Supporting Information Available:** Figures showing full-scale ¹³C NMR spectra of the various complexes for which only expansions were shown (21 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions. JA951171K