

Published on Web 11/14/2008

Gold-Catalyzed 1,3-Addition of a sp³-Hybridized C–H Bond to Alkenylcarbenoid Intermediate

Sabyasachi Bhunia and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, ROC

Received September 18, 2008; E-mail: rsliu@mx.nthu.edu.tw

One recent advent in modern synthetic chemistry is the generation of metal carbenoid from an alkyne using Au(I) and Pt(II) catalysts.¹ Insertion of a C–H bond into a metal carbenoid is a highly useful method to form a new carbon–carbon bond, and its widespread use is highlighted by development of asymmetric catalysis.^{2a} To the best of our knowledge, reported reactions of a carbenoid-induced C–H bond activation are restricted strictly to an insertion reaction,^{2,3} through a 1,1-addition of the C–H bond to a carbenoid carbon (eq 1). Here, we report an atypical gold-carbenoid induced cleavage of a sp³hybridized C–H bond, which surprisingly undergoes a 1,3-addition to vinylcarbenoid intermediate (eq 2).

Insertion of a C-H bond into carbenoid:

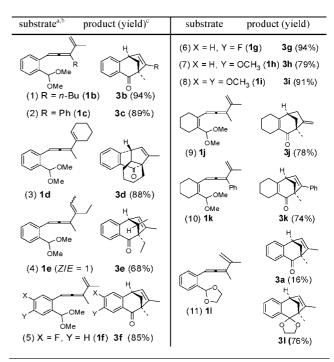
$$C^{-}H + M = C \xrightarrow{R} M \xrightarrow{R} C^{-}C^{-}C^{-}R \qquad (1)$$

1,3-Addition of a C-H bond to vinylcarbenoid:

$$C-H + M = C \xrightarrow{R} \underbrace{\text{this work}}_{M} H - C \xrightarrow{R} C$$
 (2)

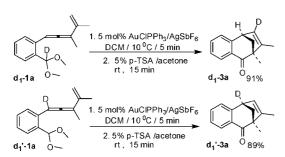
We prepared substrate **1a** bearing a 3-alkenylallene group, which acts as a precursor for the generation of an alkenylcarbenoid intermediate^{4,5} in the presence of PtCl₂ or PR₃AuSbF₆ catalyst. As shown in Table 1, treatment of species **1a** with PtCl₂/CO (5 mol %) in CH₂Cl₂ (25 °C, 10 min) gave bicyclo[3.3.0]octene **2a** as a single stereoisomer (93% yield).⁶ Compound **2a** appears to arise from a Pt(II)-catalyzed tandem Nazarov/ Nazarov cascade.⁷ The use of PPh₃AuCl/AgOTf gave compound **2a** in 69% yield. Notably, PPh₃AuCl/AgSbF₆ completely altered the cyclization pathway, giving distinct cycloisomerization products, bicyclo[3.2.1]oct-6-en-2-one **3a** and its dimethoxy derive **3a'**, in 52% and 44% yields, respectively. Hydrolysis of the reaction solution with *p*-TSA/acetone provided ketone **3a** with the yield up to 92% (entry 4). AgSbF₆ alone gave a complicated mixture of products. Structural elucidation of compound **3a** relies on an X-ray diffraction study of its alcohol derivative **3a-OH**, produced from NaBH₄ reduction.⁶

Table 1. Catalyst-Dependent Cycloisomerization of Substrate 1a

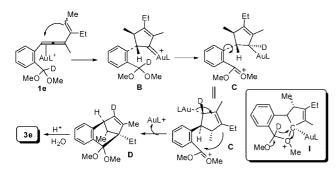

la	OMe OMe	H 2a OMe	OMe H	Ž.	- H. MeO O 3a'	Me
entry	catalyst	time (min)	temp (°C)	2a	yield (%) 3a	3a′
1	PtCl ₂ /CO	10	25	93		
2	AuClPPh3/AgOTf	5	10	69		
3	AuClPPh3/AgSbF6	5	10		44	52
4	AuClPPh ₃ /AgSbF ₆ ^a	5	10		92	

 a Before workup, the reaction mixture was treated with 5% *p*-TSA in acetone for 15 min with stirring.

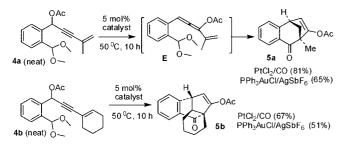
We prepared various substrates **1b**-**I** to examine the generality of the gold-catalyzed synthesis of bicyclo[3.2.1]oct-6-en-2-ones; the results are summarized in Table 2. Particularly notable is the formation of a single stereoisomer for the resulting cyclized products **3a**-**k** and **3l** despite their molecular complexity. The relative configurations of ketones **3d** and **3e** are determined by ¹H NOE spectra.⁶ Entries **1**-4 show the suitability of this cycloisomerization for substrates **1b**-**e** bearing various 3-allen-1-enyl substituents; their resulting ketones **1b**-**e** were obtained in 68–94% yields. This cycloisomerization is extended to species **1f**-**i** bearing fluoro and methoxy at the phenyl groups, giving ketones **3f**-**i** efficiently. The value of this cycloisomerization is also reflected by its applicability to nonaromatic substrates **1j** and **1k**, which gave desired ketones **3j** and **3k** in 74–78% yields. This catalysis also works well with species **1l** comprising a 1,3-dioxolane group (entry 11).


As shown in Scheme 1, Au(I)-catalyzed cyclization of species d_1 -1a shows a complete transfer of deuterium from its D-C(OMe)₂ to the olefinic hydrogen of its ketone product d_1 -3a. For species d_1 '-1a, its C(5)-deuterium stayed with the same carbon during the cycloisomerization. We found no loss of deuterium content for both d_1 -3a and d_1 '-3a even though residual water was present.

Scheme 2 shows a plausible mechanism to rationalize the stereochemistry of cyclized ketone **3e**. In the presence of PPh₃AuSbF₆, starting substrate **1e** undergoes a known allenene cyclization to give **Table 2**. Scope for Synthesis of Bicyclo[3.2.1]oct-6-en-2-ones


^{*a*} [substrate] = 0.25 M, 5 mol % PPh₃AuCl/AgSbF₆,CH₂Cl₂, 10 °C, 10 min. ^{*b*} *p*-TSA and acetone were added at the end of reaction for entries 1-10. ^{*c*} Product yields are reported after silica column chromatography.

Scheme 1



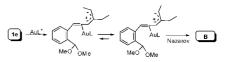
Au(I)-alkenyl carbenoid $\mathbf{B}^{4,5}$ that has a phenyl group trans to the adjacent methyl group to minimize steric hindrance.⁸ On the basis of deuterium-labeling and crossover experiments,⁹ we envisage that cleavage of the H–C(OMe)₂ bond of species **B** proceeds through an intramolecular hydride transfer, induced by the Au=C carbon to form Au(I)- η^{1} -allyl species **C** containing a dimethoxymethyl cation. Herein, we do not preclude a possibility that the methoxy group of species **B** facilitates a 1,3-hydride transfer through its coordination to carbenoid carbon,^{10,11} as depicted in state **I**. A subsequent S_E2' addition of Au(I)- η^{1} -allyl functionality at this carbocation terminus, opposite the neighboring methyl group, forms tricyclic species **D** with its methyl group.

Scheme 2

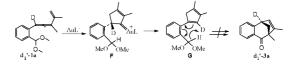
Scheme 3

The versatility of this cycloisomerization is highlighted by the transformation of substrates **4a** and **4b** into cyclized ketones **5a** and **5b** in a tandem cascade. In the presence of PtCl₂/CO or PPh₃AuSbF₆ catalysts, **4a** and **4b** initially form allenylacetate species **E** through a 1,3-acetate shift,¹² which subsequently undergo a carbeniod formation and C–H activation cascade. Interestingly, PtCl₂/CO is superior to PPh₃AuSbF₆ in cyclization efficiency, giving **5a** and **5b** in 81% and 67% yields, respectively.

In summary, we report stereoselective synthesis of bicyclo[3.2.1]oct-6-en-2-ones,¹³ through Au(I)-catalyzed cycloisomerization of alleneneacetal functionality. This cyclization is mechanistically significant because it involves an unprecedented 1,3-addition of a sp³-hybridized C–H bond to vinylcarbenoid moiety.¹⁴ Before our work, activation of a C–H bond with metal carbenoids only leads to C–H insertion products. The new concept of this atypical carbenoid-induced C–H activation warrants further investigation.¹⁵


Acknowledgment. The authors wish to thank the National Science Council, Taiwan, for supporting this work.

Supporting Information Available: Table S1,⁷ detailed synthesis of substrate, X-ray data of alcohol **3a-OH**, spectral data, and NMR spectra of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.


References

- (a) Fürstner, A.; Davies, P. W. Angew Chem. Int. Ed. 2007, 46, 3410. (b) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (c) Li, J.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. (d) Núñez, E. J.; Echavarren, A. M. Chem. Rev 2008, 108, 3326. (e) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (f) Patil, N.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395.
- (2) (a) Davies, H. M. L.; Beckwith, R. E. J. *Chem. Rev.* 2003, *103*, 2861. (b) Ye, T.; McKervey, M. A. *Chem. Rev.* 1884, *94*, 1091.
 (3) For C-H insertion by platinum- or gold-carbenoid, see: ref 4b and: (a) Oh,
- (3) For C-H insertion by platinum- or gold-carbenoid, see: ref 4b and: (a) Oh, C. H.; Lee, J. H.; Lee, S. J.; Kim, J. I.; Hong, C. S. Angew Chem., Int. Ed. 2008, 47, 7505. (b) Hashmi, A. S. K.; Schäfer, S.; Wölfle, M.; Gil, C. D.; Fischer, P.; Laguna, A.; Blanco, M. C.; Gimenno, M. C. Angew. Chem., Int. Ed. 2007, 46, 6184.
- (4) (a) Lee, J. H.; Toste, F. D. Angew Chem., Int. Ed. 2007, 46, 912. (b) Funami, H.; Kusama, H.; Iwasawa, N. Angew Chem., Int. Ed. 2007, 46, 909. (c) Lemière, G.; Gandon, V.; Cariou, K.; Fukuyama, T.; Dhimane, A. -L.; Fensterbank, L.; Malacria, M. Org. Lett. 2007, 9, 2207. (d) Gandon, V.; Lemiere, G.; Hours, A.; Fensterbank, L.; Malacria, M. Angew. Chem., Int. Ed. 2008, 47, 7534.
- (5) The carbenoid character of alkenylcarbenoid **B** is demonstrated by its cyclopropanation and C-H insertion. See ref. 4b and 4c.
- (6) X-ray structures and spectral data of alcohol 3a-OH, and 1H NOE NMR spectra of key compounds are provided in Supporting Information.
- (7) A mechanism of formation of product 2a is proposed below, comprising two consecutive Nazarov cyclizations. Additional five examples of this PtCl₂-catalyzed bicyclo[3.3.0]octene synthesis with their spectral data, are provided in Table S1 and Supporting Information.

(8) Formation of carbenoid B from of cis-1e in Scheme 2 likely involves a cis→trans isomerization of gold-π-allene intermediate before Nazarov cyclization.

- (9) Treatment of a 1:1 mixture of d₁-1a (> 97% deuterium content) and 1c with PPh₃AuCl/AgSbF₆ in CH₂Cl₂ gave only d₁-3a and 3c without formation of 3a and d₁-3c.
- (10) In rhodium-carbenoid chemistry,¹¹ heteroatoms show pronounced assistance for a 1,2-migration of substituents (Stevens rearrangement), but the assistance for a 1,3-hydride shift is unknown.
- (11) (a) Roskamp, M.; Johnson, C. R. J. Am. Chem. Soc. 1986, 108, 6062. (b) Doyle, M. P.; Tamblyn, W. H.; Bagheri, V. J. Org. Chem. 1981, 46, 5094.
- (12) (a) Marion, N.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2750. (b) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804. (c) Shi, F.-Q.; Li, X.; Xia, Y. Zhang I. Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 15503.
- Zhang, L. J. Am. Chem. Soc. 2005, 127, 10604. (c) Shit, 1-Q., El, X., Xia, Y.; Zhang, L.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 15503.
 (13) Bicyclo[3.2.1]oct-6-en-2-ones, given in this work, are key intermediates for bioactive (-)-cytisine; see: Coe, J. W.; Vetelino; Bashore, C. G.; Wirtz, M. C.; Brooks, P. R.; Arnold, E. P.; Lebel, L. A.; Fox, C. B.; Sands, S. B.; Davis, T. I., Schulz, D. W.; Rollema, H.; Tingley, F., D., III; O'Neill, B. T, Bioorg. Med. Chem. Lett. 2005, 15, 2974.
- (14) We exclude the possibility that the C-H activation of species d₁'-1a arises from a 1,5-hydrogen shift of cyclopentadiene F because of its inconsistency with our deuterium-labeling experiment.

(15) Our data suggest that the 3,4-disubstituents of the 1,2,4-triene moieties of substrates are necessary to this C-H activation.

JA807384A