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Abstract: RCM, cross-metathesis and ring-opening cross-metathe-
sis are efficiently catalyzed by a new, air-stable, bimetallic analog
of Grubbs’ Ru-based metathesis catalyst, which can be recovered
and recycled.
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Grubbs’ ruthenium-based catalysts2 (I, II) for alkene-me-
tathesis received wide attention owing to their versatility
in promoting different kinds of transformations like ring-
closing metathesis (RCM), cross-metathesis (CM), ring-
opening-cross-metathesis (ROCM) and ring-opening
metathetic polymerization (ROMP). The first three have
been extensively exploited in synthetic organic chemistry.

Based on kinetic studies, Grubbs and coworkers
concluded3 that the first step is dissociative: one of the
phosphine ligands dissociates to provide a 14e complex.
Rate of alkene coordination to this intermediate (initia-
tion) is competitive with the rate of phosphine ‘re-associ-
ation’; for an efficient catalyst, former must predominate.
Steric and electronic attributes of the carbene ligand tacit-
ly influence this initiation process. For instance, an elec-

tron-rich and bulky substituent on the carbene ligand is
likely to promote dissociation of phosphine. At the same
time, it would also favor coordination of an alkene over
recombination of a free phosphine ligand on steric
grounds. Combining this argument with our interest in
ferrocene-based materials, we have described herein syn-
thesis and metathesis reactions of a novel analog of cata-
lyst I (Figure 1) that features a ferrocene substituent on
the carbene carbon. Ferrocene is electron-rich and has a
considerable steric bulk – thus it addresses both electronic
and steric criteria to promote metathesis. Preliminary re-
sults indicate that the catalytic efficiency of the new com-
plex, III, is comparable to Grubbs’ catalyst I, and the
robust, air-stable complex can be very conveniently
stored, recovered and recycled.4

Attempted base-induced decomposition of the tosylhydra-
zone of ferrocenecarboxaldehyde failed to produce ferro-
cenyldiazomethane; thermolysis produced only 1,2-
diferrocenylethene. The complex III was, therefore,
prepared5 by treatment of vinylferrocene with complex I
at ambient temperature (Scheme 1), and isolated (87%) as
an air-stable, dark purple solid.6 It is soluble in common
solvents for alkene metathesis like benzene, toluene and
dichloromethane.

Figure 1

Scheme 1
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Ring-closing metathesis catalyzed by complex III was
studied with several substrates and the results are
summarized7 in Table 1. The yields are generally excel-
lent while the reaction time is short. About 2–2.5 mol% of
catalyst was sufficient for quantitative conversion in most
instances. Efficiency of the catalyst compares well with
Grubbs’ first-generation catalyst I – the propagation steps
are identical for both the catalysts. Substrates with free
hydroxyl groups seem to require longer period for com-
plete conversion than corresponding acetates. For sub-
strate 6a, oligomeric side-products (via competitive
ADMET) accounted for diminished yield.

The carbene complex 8a, which closely resembles the or-
ganic substrate 7a, requires more quantity of catalyst (10
mol% of I or III) than 7a, and longer time for completion8

(Scheme 2). Thermal activation does not compensate for
use of less amount of catalyst. When 7.5 mol% of vinyl-
ferrocene was added after 30 min and the solution was
heated under reflux, yield improved to 99%. This indicat-
ed that it was indeed possible to regenerate the active cat-
alyst III under this reaction condition.9

Another organometallic substrate, 9a, required 10 mol%
of catalyst III to provide a high yield of corresponding
RCM product, 9b. Interestingly in this case, the complex

that is released after the ring-closing step is similar to
original catalyst I, yet the catalyst requirement is relative-
ly high. Again, use of 5 mol% of catalyst augmented with
7.5 mol% of vinylferrocene added after 20 min, afforded
the RCM product in 91% yield after 4 hours at ambient
temperature (Scheme 3), indicating in situ regeneration of
catalyst III.

Scheme 3

Unlike RCM, cross-metathesis worked best when heated
under reflux in dichloromethane (Table 2). Cross-met-
athesis of the substrate 10a with catalyst I was recently re-
ported.10 Yields obtained with the catalysts I and III are
comparable. Ring-opening cross-metathesis of bicyclic
substrate 12a also worked well with catalyst III.

Attempts were made to recover the catalyst III from the
reaction mixture at the end of the reaction. In a prelimi-
nary attempt, after the substrate 7a was completely con-
verted by 2.5 mol% catalyst to RCM product 7b,
vinylferrocene (4 mol%) was added to the solution and it
was heated under reflux for 40 min. Precipitation by meth-
anol afforded 45% of the catalyst III in sufficiently pure
form (NMR) and without any loss of activity as tested by
subsequent runs. Improvement of catalyst recovery proto-
col, anchoring the catalyst on insoluble support and
ROMP activity are currently being studied in this labora-
tory.

Table 1 RCM using Catalyst IIIa

En-
try

Substrates 
(Concn)

Product Catalyst 
(mol%)

Time/
Temp

Yield 
(%) 

1

1a (0.1 M) 1b

2.5 15 min/r.t. 98

2

2a (0.1 M) 2b

2.5 2 h/r.t. 90

3

3a (0.1 M) 3b

2.5 15 min/r.t. 97

4

4a (0.1 M) 4b

2.5 1.5 h/ r.t. 92

5

5a (0.05 M) 5b

2.5 30 min/r.t. 98

6

6a (0.05 M) 6b

2.5 1.5 h/r.t. 67

7

7a (0.1 M) 7b

2 30 min/r.t. 97

a All the reactions were carried out in CH2Cl2 at room temperature un-
der Ar.

Scheme 2
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Table 2 Cross-Metathesis using Catalyst IIIa

En-
try

Substrate 
(Concn)

Product Cat. III 
(mol%)

Time/
Temp.

Yield 
(%)

1.

10a (0.5 M)

10b

5 6 h/
reflux

83

2.

11a (0.5 M)b

11b

5 6 h/
reflux

81

3.

12a (0.5 M)c

12b

5 1.5 h/
refluxd

72

a All reactions were carried out in dichloromethane and in each case 
E/Z >9:1.
b 3 equiv allyltrimethylsilane was used.
c 20% molar excess of vinylferrocene was used.
d No ROMP product was detected.
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