|               | N-Mimetic a                       | activity            | M-Mimetic                         | activity            |
|---------------|-----------------------------------|---------------------|-----------------------------------|---------------------|
| Compound      |                                   |                     |                                   |                     |
|               | EK <sub>50</sub> ,<br>moles/liter | activity<br>ratio • | EK <sub>50</sub> ,<br>moles/liter | activity<br>ratio * |
| lla<br>Illa   | $2,0.10^{-4}$<br>$4,5.10^{-6}$    | 44                  | $6,0.10^{-4}$<br>2.0.10^{-4}      | 3                   |
| II b<br>II Ib | $1,3.10^{-4}$                     | 118                 | 1,0.10-4<br>1.0.10-6              | 100                 |
| Hic<br>HIC    | 2,8·10-4                          | 175                 | 2,0.10-4<br>2.0.10-5              | 10                  |
| IId<br>III d  | 6,3·10-4<br>2,0·10-6              | 315                 | 3,0.10-4<br>5.0.10-6              | 60                  |

TABLE 1. Nicotino- and Muscarinomimetic Activity of Compounds IIa-d and IIIa-d

\*The activity ratio of the circular compound IIIa-d to the activity of the linear compound IIa-d with the same acyl radicals.

The conformational influence on the muscarinomimetic activity is a maximum at R = Me; in the sequence from compound IIa to compound IIIa there is a 100-fold increase in the muscarinomimetic activity.

#### LITERATURE CITED

1. N. V. Khromov-Borisov, A. F. Danilov, L. N. Aleksandrova, et al., Dokl. Akad. Med. Nauk SSSR, 230, No. 5, 1250-1253 (1976).

2. E. I. Ariens, Arch. Int. Pharmacodynam., 99, 32 (1954).

3. C. C. Price, G. Kabas, and J. Naketa, J. Med. Chem., 8, 650 (1965).

## $\beta$ -AMINO KETONES — $\alpha$ -AMINO ACID DERIVATIVES.

IV. AMINOMETHYL DERIVATIVES OF ACETOPHENONES AND THEIR BIOLOGICAL ACTIVITY

 A. G. Agababyan, G. A. Gevorgyan, L. K. Durgaryan,
 UDC 615.274+615.212.3+615.

 E. V. Vlasenko, R. V. Agababyan, Yu. Z. Ter-Zakharyan,
 281]:547.477.5

A. E. Tumadzhyan, N. A. Apoyan, and O. L. Mndzhoyan

As we have previously shown [1], many  $\beta$ -amino ketones — derivatives of  $\alpha$ -amino acids — display antiinflammatory, antipyretic, and bactericidal properties. In a continuation of our research on the synthesis and study of the biological activity of amino ketones —  $\alpha$ -amino acid derivatives [2-4] — we have obtained a number of  $\beta$ -amino ketones, viz., serine, threenine, valine, and leucine derivatives, and have studied their antibacterial, local-anesthetic, and antiinflammatory properties.

The hydrochlorides of N-[ $\beta$ (p-substituted benzoy1)ethy1] amino acids (I-VI) and ethy1 esters (VII, VIII) were obtained via the Mannich reaction [2, 4].

 $\begin{array}{rl} n \cdot RC_{6}H_{4}COCH_{2}CH_{2}A\\ I-VIII\\ I: R = H; K = NHCH(COOH)\\ CH(CH_{3})_{2}; II: R = CH_{3}O; A = \\ = NHCH(COOH)CH(CH_{3})_{2}; III:\\ R = H; NHCH(COOH)CH_{2}CH\\ (CH_{3})_{2}; IV: R = CH_{3}O; \end{array}$ 

A. L. Mndzhoyan Institute of Fine Organic Chemistry, Academy of Sciences of the Armenian SSR, Yerevan. Translated from Khimiko-farmetsevticheskii Zhurnal, Vol. 18, No. 6, pp. 691-697, June, 1984. Original article submitted August 22, 1983.

403

| mpound         Optical         Yield, $\mathcal{P}_{n}$ mp, $\mathbf{C}_{c}$ Found, $\mathcal{P}_{n}$ Calculate         Calculate           1*         DL         65,0         178-180         59,06         6,82         5,13         12,00 $C_{14}H_{a0}CINO_{3}$ 58,84         7,05         4           11         DL         36,5         172-174         56,85         7,20         4,60         11,51 $C_{14}H_{a0}CINO_{3}$ 58,84         7,05         4           11         DL         36,5         172-174         56,85         7,20         4,60         12,01 $C_{14}H_{a0}CINO_{3}$ 58,84         7,05         4           111         L         22,0         196-198         59,58         7,50         4,50         7,02         4         4         4         4,50         11,20 $C_{16}H_{a4}CINO_{4}$ 58,36         7,33         4         4         7         1         1         1         4         4         5         1,120 $C_{16}H_{a4}CINO_{4}$ 58,26         7,33         4         4         4         1         1         9         4         4         1         1         1         1         1         1 | 3LE 1. | Propert | ties of   | p-RC6H4 | COCH2CI | H2A • HC1 | IIV-I) | (I)   |                                                                 |        |        |          |       |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-----------|---------|---------|-----------|--------|-------|-----------------------------------------------------------------|--------|--------|----------|-------|---------|
| I*         DL         65,0         178–180         59,06         6,82         5,13         12,00 $C_{15}H_{20}CINO_3$ 58,84         7,05         4           II         DL         65,0         178–180         59,06         6,82         5,13         12,00 $C_{16}H_{20}CINO_3$ 58,84         7,05         4           II         DL         36,5         172–174         56,85         7,20         4,60         11,51 $C_{16}H_{20}CINO_3$ 58,84         7,05         4           III         L         22,0         196–198         59,58         7,50         4,60         12,01 $C_{16}H_{24}CINO_3$ 60,09         7,40         4           IV         L         29,7         170–172         57,80         7,00         4,75         11,20 $C_{16}H_{24}CINO_4$ 58,26         7,33         4           V         -         32,6         149–152         54,44         6,49         4,52         12,00 $C_{16}H_{20}CINO_4$ 58,26         7,33         4           VI         -         38,0         124–126         55,81         6,60         4,47         11,93 $C_{14}H_{20}CINO_4$ 55,72                                     | punod  | Optica1 | Vield of. | mp. C   |         | Found     | 1. %   |       |                                                                 |        | Calcul | ated. do |       |         |
| I*         DL         65,0         178-180         59,06         6,82         5,13         12,00 $C_{14}H_{30}CINO_3$ 58,84         7,05         4           II         DL         36,5         172-174         56,85         7,20         4,60         11,51 $C_{15}H_{32}CINO_3$ 58,84         7,05         4         4         7         7         4         4         6         11,51 $C_{15}H_{32}CINO_3$ 58,84         7,05         7,02         4         4         6         11,51 $C_{15}H_{32}CINO_3$ 58,84         7,05         7,02         4         4         7         11,91 $C_{15}H_{32}CINO_3$ 60,09         7,40         4         4         7         11,20 $C_{16}H_{34}CINO_4$ 58,26         7,33         4         4         7         11,20 $C_{16}H_{36}CINO_4$ 58,26         7,33         4         4         4         5         11,20 $C_{14}H_{30}CINO_4$ 58,26         7,33         4         4         4         5         11,93 $C_{14}H_{30}CINO_4$ 55,72         6,68         4         4         4         4         4         5         4         5         5                                         | -      | form    | of more   |         | C       | Н         | z      | U     | Empirical formula                                               | U      | Н      | Z        | ci    | $R_{f}$ |
| II         DL         36.5         172-174         56.85         7,20         4,60         11,51 $C_{16}H_{32}CINO_4$ 57,05         7,02         4           III         L         22,0         196-198         59,58         7,50         4,60         12,01 $C_{15}H_{32}CINO_3$ 60,09         7,40         4           IV         L         22,0         196-198         59,58         7,50         4,75         11,20 $C_{16}H_{34}CINO_3$ 60,09         7,40         4           V         -         32,6         149-152         54,44         6,49         4,52         12,00 $C_{19}H_{46}CINO_4$ 54,26         7,33         4           VI         -         32,6         149-152         54,44         6,49         4,52         12,00 $C_{10}H_{40}CINO_4$ 54,26         6,31         4           VI         -         38,0         124-126         55,81         6,60         4,47         11,93 $C_{14}H_{40}CINO_4$ 55,72         6,68         4           VII         DL         27,0         11,93 $C_{14}H_{40}CINO_4$ 55,72         6,68         4           VIII         DL                                            | *1     | DL      | 65,0      | 178—180 | 59,06   | 6,82      | 5,13   | 12,00 | C <sub>14</sub> H <sub>20</sub> CINO <sub>3</sub>               | 58,84  | 7,05   | 4,90     | 12,41 | 0.72    |
| III       L $\dagger$ 22,0       196-198       59,58       7,58       4,60       12,01 $C_{16}H_{2a}CINO_3$ 60,09       7,40       4         IV       L $\dagger$ 29,7       170-172       57,80       7,00       4,75       11,20 $C_{16}H_{2a}CINO_4$ 58,26       7,33       4         V        32,6       149-152       54,44       6,49       4,52       12,00 $C_{13}H_{16}CINO_4$ 54,26       6,31       4         VI        38,0       124-126       55,81       6,60       4,47       11,93 $C_{14}H_{20}CINO_4$ 55,72       6,68       4         VII       DL       27,0       158-160       50,17       5,45       4,25       20,91 $C_{14}H_{20}CINO_4$ 57,09       4         VIII       DL       40,5       130-133       55,29       6,50       4,30       20,10 $C_{16}H_{20}CI_{2}NO_4$ 55,18       6,66       4                                                                                                                                                                                                                                                                                                           | II     | DL      | 36,5      | 172-174 | 56,85   | 7,20      | 4,60   | 11,51 | C <sub>15</sub> H <sub>22</sub> CINO4                           | 57,05  | 7,02   | 4,44     | 11,23 | 0.71    |
| IV       L       T       29,7       170-172       57,80       7,00       4,75       11,20 $C_{16}H_{a4}CINO_{4}$ 58,26       7,33       4         V       -       32,6       149-152       54,44       6,49       4,52       12,00 $C_{13}H_{16}CINO_{4}$ 54,26       6,31       4         VI       -       38,0       124-126       55,81       6,60       4,47       11,93 $C_{14}H_{10}CINO_{4}$ 55,72       6,68       4         VII       DL       27,0       158-160       50,17       5,45       4,25       20,91 $C_{14}H_{10}CINO_{4}$ 50,01       5,70       4         VIII       DL       40,5       130-133       55,29       6,50       4,30       20,10 $C_{16}H_{10}CI_{3}NO_{4}$ 55,18       6,66       4                                                                                                                                                                                                                                                                                                                                                                                                                 | III    | r<br>L  | 22,0      | 196-198 | 59,58   | 7,58      | 4,60   | 12,01 | C <sub>15</sub> H <sub>22</sub> CINO <sub>3</sub>               | 60'09  | 7,40   | 4,67     | 11,83 | 0,84    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IV     | +-<br>  | 29,7      | 170-172 | 57,80   | 7,00      | 4,75   | 11,20 | C <sub>16</sub> H <sub>24</sub> CINO <sub>4</sub>               | 58,26  | 7,33   | 4,25     | 10,75 | 0,80    |
| VI         -         38,0         124-126         55,81         6,60         4,47         11,93 $C_{14}H_{20}CINO_4$ 55,72         6,68         4           VII         DL         27,0         158-160         50,17         5,45         4,25         20,91 $C_{14}H_{20}CI_2NO_4$ 50,01         5,70         4           VII         DL         40,5         130-133         55,29         6,50         4,30         20,10 $C_{16}H_{20}CI_{2}NO_4$ 55,18         6,66         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Λ      |         | 32,6.     | 149—152 | 54,44   | 6,49      | 4,52   | 12,00 | C <sub>13</sub> H <sub>18</sub> CINO4                           | 54, 26 | 6,31   | 4,87     | 12,32 | 0,67    |
| VII         DL         27,0         158-160         50,17         5,45         4,25         20,91 $C_{14}H_{19}Cl_2NO_4$ 50,01         5,70         4           VIII         DL         40,5         130-133         55,29         6,50         4,30         20,10 $C_{16}H_{3}Cl_{3}NO_3$ 55,18         6,66         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ١٨     | ļ       | 38,0      | 124-126 | 55,81   | 6,60      | 4,47   | 11,93 | C <sub>14</sub> H <sub>20</sub> CINO <sub>4</sub>               | 55,72  | 6,68   | 4,64     | 11,75 | 0,71    |
| VIII   DL   40,5   130-133   55,29   6,50   4,30   20,10   C <sub>16</sub> H <sub>32</sub> Cl <sub>3</sub> NO <sub>3</sub>   55.18   6.66   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VII    | DL      | 27,0      | 158160  | 50,17   | 5,45.     | 4,25   | 20,91 | C <sub>14</sub> H <sub>19</sub> Cl <sub>2</sub> NO <sub>4</sub> | 50,01  | 5,70   | 4,17     | 21,09 | 0.74    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VIII   | DL      | 40,5      | 130-133 | 55,29   | 6,50      | 4,30   | 20,10 | C <sub>16</sub> H <sub>23</sub> Cl <sub>2</sub> NO <sub>3</sub> | 55,18  | 6,66   | 4,02     | 20,36 | 0,67    |

| ~                                                  |
|----------------------------------------------------|
| (IIIV-I)                                           |
| CH <sub>2</sub> A·HC1                              |
| p-RC <sub>6</sub> H <sub>4</sub> COCH <sub>2</sub> |
| of                                                 |
| Properties                                         |
| -                                                  |
| ABLE                                               |

 $\frac{\text{*UV}}{\text{The angles of rotation were +40.0° for III and +10° for IV.}$ 

The aminomethylation of p-substituted acetophenones has been studied in detail in the case of amino acids such as glycine,  $\alpha$ -alanine, phenylalanine, etc. [2-4]. The optimum conditions for condensation involve the use of 10% formalin and an equimolar amount of hydrochloric acid with ethanol as the solvent. Proceeding from this, the aminomethylation of p-substituted acetophenones with valine, leucine, and sarcosine was carried out under the same conditions. Since the yields of products of aminomethylation of p-substituted acetophenones by the indicated amino acids are low (22-65%), and  $\beta$ -acylethyl derivatives of tryptophan and glyclylglycine could not be obtained by this method, we obtained a number of N-[ $\beta$ -(p-substituted benzoyl)ethyl]serines, -threenines, -valines, -leucines, -tryptophans, and -glycylglycines (X-XXII) via the following scheme [3]:

 $\begin{array}{ll} P \neg RC_{6}H_{4}COCH_{2}CH_{2}N(C_{2}H_{5})_{2} + HA & \longrightarrow P \land RC_{6}H_{4}COCH_{2}CH_{2}A \\ IX & X \neg XXIII \\ \hline X: R = Cl; A = NHCH(COOH)CH(CH_{3})_{2}; XI: R = H; A = NHCH(COOH)CH_{3}CH(CH_{3})_{2}; \\ XII: R = Cl; A = NHCH(COOH)CH_{2}CH(CH_{3})_{2}(L); XIII: R = Cl; \\ A = NHCH(COOH)CH_{2}CH(CH_{3})_{3}(D); XIV; R = H; A = NHCH(COOH)CH_{2}OH; \\ XV: R = Cl; A = NHCH(COOH)CH_{2}OH; XVI: R = H; A = NHCH(COOH)CH_{2}OH; \\ XVII: R = Cl; A = NHCH(COOH)CH(OH)CH_{3}; XVIII: R = Cl; A = N(CH_{3})CH_{2}COOH; \\ XIX: R = H; A = (NHCH_{2}CO)_{2}OH; XX: R = Cl; A = (NHCH_{2}CO)_{2}OH; XXII: R = H; \\ A = NHCH(COOH)CH_{2} \neg 3 - indolyl; XXII: R = Cl; A = NHCH(COOH)CH_{2} \neg 3(L) - indolyl; \\ XXIII: R = Cl; A = NHCH(COOH)CH_{2}(COOH)CH_{2} \neg 3(D) - indolyl. \end{array}$ 

The structures of the synthesized compounds were confirmed by data from the IR, UV, and NMR spectra and, in a number of cases, by means of mass spectrometry.

An absorption band of a carbonyl group ( $v_{C=0}$  1680-1700 cm<sup>-1</sup>) is observed in the IR spectra of  $\beta$ -amino ketones I-VIII and X-XXIII. Absorption bands of an ionized carboxy group [ $v_{C00}$  (a) 1580-1590;  $v_{C00}$  (s) 1405-1410 cm<sup>-1</sup> are observed in the IR spectra of N-[ $\beta$ -(p-substituted benzoyl)ethyl]amino acids X-XXIII; absorption bands of carboxy and carbethoxy groups at 1730-1760 cm<sup>-1</sup> are observed in the spectra of their hydrochlorides I-IV and the ethyl ester hydrochlorides VII and XV. Absorption bands of a hydroxy group at 3285 and 3235 cm<sup>-1</sup>, respectively, are also observed in the spectra of serine derivatives XIV and XV and threonine derivatives XVI and XVII.

The data from the UV spectra of amino ketones I, XXI, and XXII are presented in Tables 1 and 2.

We also conducted a mass-spectrometric study of N-[ $\beta$ -(p-chlorobenzoyl)ethyl] amino acids XII, XVI, XVII. Despite the absence of a molecular peak, the fragmentation data may serve as evidence for the structures of these  $\beta$ -amino ketones.



# EXPERIMENTAL CHEMISTRY

Thin-layer chromatography (TLC) was carried out on plates with a fixed layer of silica gel-gypsum by the method in [3]. The IR spectra were recorded with a UR-20 spectrometer (East Germany). The mass spectra were recorded with MKh-1320 spectrometer. The angles of rotation were determined with an SM polarimeter.

| -      |
|--------|
|        |
| 5      |
| ĥ      |
| 岁      |
| Ć      |
|        |
| 4      |
| _      |
| н      |
| 9      |
| È      |
| Ξ      |
| ē      |
| Ĉ      |
| . •    |
| μ      |
| 2      |
| $\sim$ |
| Π      |
| ċ      |
|        |
| U)     |
| C      |
| P      |
| ·      |
| Ē      |
| -      |
| ų_     |
| Ċ      |
|        |
| Ŭ,     |
| đ      |
| 1      |
| t      |
| 6      |
| Ē      |
| Ċ      |
| Ł      |
| ρ      |
|        |
| ~      |
|        |
| Ē      |
| F      |
| μ      |
| _      |

|                                               | Optical form                              |                         |              |                             | Fou                          | nd, %                        |                    |                                                                 |                                                     | Calcula                     | ted. $\phi_0$        |                  |      |
|-----------------------------------------------|-------------------------------------------|-------------------------|--------------|-----------------------------|------------------------------|------------------------------|--------------------|-----------------------------------------------------------------|-----------------------------------------------------|-----------------------------|----------------------|------------------|------|
| Compound                                      | (angle of<br>rotation,<br>deg)            | mp, °C                  | Yield, 70    | v                           | н                            | Z                            | ö                  | Empirical for-<br>mula                                          | υ                                                   | H                           | z                    | ច                | RJ   |
| x                                             | DL                                        | 168—170                 | 69,2         | 59,47                       | 6,50                         | 4,63                         | 12,81              | C <sub>14</sub> H <sub>1</sub> ,CINO <sub>3</sub>               | 59,26                                               | 6,39                        | 4,94                 | 12,50            | 0,81 |
| IX                                            | L (+25)                                   | 218,5-222,5             | 53,5         | 68,19                       | 8,28                         | 5,30                         | 1                  | C <sub>16</sub> H <sub>21</sub> NO <sub>3</sub>                 | 68,41                                               | 8,04                        | 5,32                 | 1                | 0,76 |
| XII                                           | L (+30)                                   | 199-204                 | 73,7         | 61,00                       | 6,38                         | 4,49                         | 12,05              | C <sub>15</sub> H <sub>20</sub> CINO <sub>3</sub>               | 60,50                                               | 6,77                        | 4,70                 | 11,91            | 0,71 |
| XIII                                          | DL (30)                                   | 200-204                 | 47,6         | 60,40                       | 6,60                         | 4,77                         | 11,80              | C <sub>15</sub> H <sub>20</sub> CINO <sub>3</sub>               | 60,50                                               | 6,77                        | 4,70                 | 11,91            | 0,71 |
| XIV                                           | DL                                        | 179—183                 | 57,5         | 60,58                       | 6,20                         | 5,83                         | Ì                  | $C_{12}H_{15}NO_4$                                              | 60,75                                               | 6,37                        | 5,90                 |                  | 0,63 |
| XV                                            | DL                                        | 192—197<br>deg          | 49,0         | 53,27                       | 5,40                         | 4,96                         | 12,76              | C <sub>12</sub> H <sub>14</sub> CINO <sub>4</sub>               | 53,05                                               | 5,19                        | 5,16                 | 13,05            | 0,61 |
| IVX                                           | DL                                        | 175-178                 | 87,0         | 61,88                       | 6,40                         | 5,64                         | 1                  | C <sub>13</sub> H <sub>17</sub> NO <sub>4</sub>                 | 62,14                                               | 6,82                        | 5,57                 | ļ                | 0,75 |
| XVII                                          | DL                                        | 192-194                 | 41,5         | 54,38                       | 5,70                         | 5,30                         | 12,50              | C <sub>13</sub> H <sub>16</sub> CINO <sub>4</sub>               | 54,65                                               | 5,64                        | 4,90                 | 12,41            | 0,76 |
| XVIII                                         |                                           | 152—156                 | 22,4         | 56,01                       | 5,40                         | 5,35                         | 14,09              | C <sub>12</sub> H <sub>14</sub> CINO <sub>3</sub>               | 56,37                                               | 5,52                        | 5,48                 | 13,87            | 0,70 |
| XIX                                           | [                                         | 175178                  | 40,5         | 59,60                       | 6,46                         | 10,55                        | ł                  | C <sub>13</sub> H <sub>16</sub> N <sub>2</sub> O <sub>4</sub>   | 59,08                                               | 6,10                        | 10,60                |                  | 0,53 |
| ХХ                                            | -                                         | 110-112                 | 39,5         | 52,01                       | 5,20                         | 9,32                         | 12,40              | C <sub>13</sub> H <sub>15</sub> CIN <sub>2</sub> O <sub>4</sub> | 52,27                                               | 5,06                        | 9,38                 | 11,87            | 0,61 |
| XXI*                                          | D (20)                                    | 193                     | 84,5         | 70,95                       | 6,10                         | 8,16                         | 1                  | C20H20N2O3                                                      | 71,41                                               | 5,99                        | 8,33                 |                  | 0,77 |
| XXII*                                         | L (+106)                                  | 175-178                 | 96,2         | 64,48                       | 5,50                         | 7,70                         | 9,45               | C20H10CIN2O3                                                    | 64,78                                               | 5,14                        | 7,55                 | 9,56             | 0,74 |
| IIXIX                                         | D (-102)                                  | 172-174                 | 84,5         | 64,40                       | 5,49                         | 8,00                         | 9,30               | C <sub>20</sub> H <sub>19</sub> CIN <sub>2</sub> O <sub>3</sub> | 64,78                                               | 5,14                        | 7,55                 | 9,56             | 0,73 |
| $\frac{*UV \text{ spect}}{\lambda_{5}} = 290$ | $ra: XXI: \lambda$ nm (E <sub>5</sub> = 0 | $v_1 = 203$ ().18); XXI | (Ε1 = 1.<br> | 0), λ <sub>2</sub><br>= 217 | = 220<br>(E <sub>1</sub> = ] | (E <sub>2</sub> =<br>1.1), λ | 1.6), )<br>2 = 257 | $v_{a} = 250 (E_{a} = 7) (E_{2} = 0.58),$                       | $\begin{array}{c} 0.4 \\ \lambda_3 = 2 \end{array}$ | $\lambda_4 = 28$<br>90 nm ( | 30 (E4 =<br>(E3 = 0) | = 0.22)<br>.18). |      |

| Compound                                                                         | Acute toxicity (LD <sub>50</sub> ,<br>mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EC50,†mg/10 ml                                                                                                                                                                                                                                                                                                      | Local-irritating<br>effect |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Novocain<br>I<br>III<br>IV<br>V<br>VI<br>VIII<br>XII<br>XII<br>XIII<br>XIII<br>X | $\begin{array}{c c} & 192 \ (176, 6-208, 7) \\ & 580 \ (479, 3-701, 8) \\ & 262 \ (222, 03-309, 2) \\ & 278 \ (227, 8-339, 2) \\ & 520 \ (452, 2-598) \\ & 597 \ (485, 3-734, 3) \\ & 1240 \ (1137, 6-1351, 6) \\ & 1000 \ (1018, 5-1188, 1) \\ & 310 \ (227, 9-421, 6) \\ & 484 \ (400-585, 6) \\ & 840 \ (672-1050) \\ & 310 \ (268, 4-359, 1) \\ & 650 \ (526, 3-802, 7) \\ & 410 \ (310, 6-541, 2) \\ & 1580 \ (1874, 0-1959, 2) \\ & 618 \ (490, 5-478, 7) \\ & 520 \ (481, 8-500, 6) \\ & 1015 \ (330, 07-1098, 2) \\ & 650 \ (500-845) \\ & 550 \ (423-715) \end{array}$ | $\begin{array}{c c} & 5 & (3,66,8) \\ 17,5 & (10,329,7) \\ 57 & (3492) \\ & 0^{**} \\ 47,5 & (29,776) \\ 0 \\ 14,5 & (8,72,4) \\ 21 & (16,227,3) \\ 0 \\ 47 & (27,679,9) \\ 0 \\ 49 & (28,883,3) \\ 44 & (25,874,8) \\ 0 \\ 24 & (18,231,7) \\ 0 \\ 13 & (1016,9) \\ 17 & (11,524,5) \\ 33 & (1760) \\ \end{array}$ |                            |
| XXIII                                                                            | 800 (666,6960)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                   |                            |

TABLE 3. Comparative Evaluation of the Acute Toxicity, Anesthetizing Activity, and Local-Irritating Action of the Synthesized Compounds

\*Slight reddening is indicated by +, spot necrosis is denoted by +++, and pronounced necrosis is indicated by ++++. <sup>†</sup>The absence of activity is indicated by 0. Note: The range of variations is indicated in parentheses.

TABLE 4. Antibacterial Activity of N-[ $\beta$ -(p-Substituted benzoyl)ethyl]- $\alpha$ -amino Acids X-XXIII

| Compound | Minimal suppr<br>centration, µg | essing con-                           |
|----------|---------------------------------|---------------------------------------|
| Compound | Staph. aureus<br>209P           | Sh. dysente-<br>riae Flexnori<br>6858 |
| X        | 610                             | 610                                   |
| XI       | 5000                            | 5000                                  |
| XII      | 70                              | 310                                   |
| XIII     | 310                             | 610                                   |
| XIV      | 2500                            | 2500                                  |
| XV       | 35                              | 150                                   |
| XVI      | 2500                            | 2500                                  |
| XVII     | 35                              | 150                                   |
| XVIII    | 310                             | 310                                   |
| XIX      | 1250                            | 1250                                  |
| XX       | 610                             | 610                                   |
| XXI      | 5000                            | 5000                                  |
| XXII     | 1250                            | 1250                                  |
| XXIII    | 2500                            | 2500                                  |

 $N-[\beta-(p-Substituted benzoy1)ethy1]-DL-valine, L-Leucine, and Sarcosine Hydrochlorides. These compounds were obtained by the method in [3].$ 

 $\frac{\text{Ethyl-N-[\beta-(p-chlorobenzoyl)ethyl]-DL-serine and DL-Valine Hydrochlorides (VII, VIII).}{\text{These compounds were synthesized by the method in [2].}$ 

<u>N-[ $\beta$ -(p-Substituted benzoyl)ethyl]-DL-Valines, D(L)-Leucines, DL-Serines, DL-Threonines, DL-Glycylglycinates, D(L)-Tryptophans, and Sarcosine (X-XXIII). A mixture of 0.01 mole of the amino acid and 0.01 mole of IX in 25 ml of water was heated with stirring on a boiling-water bath for 2 h, after which the mixture was cooled, and the crystalline product was removed by filtration and washed on the filter with acetone. Evaporation of the mother liquor to half the volume of the added water gave up to 20% overall yield of the amount of the amino ketone.</u>

The constants of the synthesized compounds are presented in Table 2.

## EXPERIMENTAL PHARMACOLOGY

The acute toxicity of the compounds in the case of intraperitoneal administration was determined with respect to white male mice with masses ranging from 18 to 22 g. The results of the experiments were taken into account after 24 h in an alternative form of taking into account the reaction from the number of perished animals. The statistical treatment (here and subsequently) was carried out by the method of Litchfield and Wilcoxon [6]. The data obtained are presented in Table 3.

The local toxicity was studied with respect to white guinea pigs with masses ranging from 250 to 300 g [11]. The 0.25-2% test solutions, which were prepared in an isotonic solution of sodium chloride, was administered subcutaneously in a volume of 0.2 ml in the spinal region of the animal. We ascertained a relationship between the chemical structures of the tested compounds and the existence of local-irritating effect. Thus N-[ $\beta$ -(p-substituted benzoyl)ethyl]amino acid hydrochlorides (I-VI) has a pronounced local-irritating effect, whereas N- $\beta$ -(p-substituted benzoyl)ethyl]amino acids X-XXIII do not have this property (see Table 3).

The pharmacological evaluation of the synthesized compounds was realized by means of anesthesiometric and analgesiometric tests; their antagonistic activity with respect to narcotic analgesics was evaluated.

The study of the anesthetic activity involving a model of conductor anesthesia in vitro was carried out on the isolated nerves of frogs [7]. The concentration of the compound that gives rise to 50% blocking (EC<sub>50</sub>) of the potential of the nerve action was taken as the standard. The results of the experiments showed that, of the tested substances, I, VIII, and XX were most effective; however, even they are somewhat inferior to the control preparation novocain (see Table 3). It should be noted that I-VIII and X-XXIII are significantly less toxic than novocain (another control preparation, viz., dicain, is more toxic than novocain by a factor of 10).

The surface-anesthetizing activity of the compounds was evaluated with respect to the cornea of rabbits by the Regnier method [13]. A 0.2% solution of dicain was used as the control preparation. The tested compounds did not display surface-anesthetizing activity.

In a study of the analgesic activity of the narcotic type with respect to a model of mechanical irritation of rat tails [10] it was established that only the N-[ $\beta$ -(p-substituted benzoyl)ethyl]amino acids hydrochlorides in a dose of 10 mg/kg had a weak central anesthetiz-ing effect. In this group XXI was more active.

The antagonistic (with respect to opiates) activity (with respect to a model involving the suppression of the analgesic activity of morphine in a dose of 5 mg/kg, ED,, in the case of mechanical irritation of rat tails) was investigated. The data obtained demonstrated that XIV and XVI have an antagonistic effect, suppressing morphine analgesia by 31.4 and 67.6%, respectively, in a dose of 10 mg/kg administered subcutaneously, whereas the control antagonist naloxone in a dose of 3 mg/kg displayed 99% activity.

We also studied the antiinflammatory analgesic (of the non-narcotic type) [5, 12], and antipyretic [8] properties of the synthesized compounds. The antiinflammatory and analgesic activity was investigated in the case of internal administration in doses of 1 and 10 mg/kg, whereas the antipyretic activity was investigated in a dose of 5 mg/kg. The results of these experiments showed that all of the investigated compounds are inactive.

The bacteriological activity of I-VIII and X-XXIII was determined by the method of twofold serial culturing [9] with respect to test microbes Staph. aureus 209 P and Sh. dysenteriae Flexneri 6858. The inoculation dose of the culture was  $2\cdot10^6$  microbe cells per milliliter. The activity was evaluated from the minimal suppressing concentration (MSC) with respect to the growth of test microbes. The experiments were repeated three times.

The  $\beta$ -amino ketone hydrochlorides —  $\alpha$ -amino acid derivatives (I-VI) — did not display antibacterial activity (the MSC of these compounds does not exceed 2500 µg/ml). Their LD<sub>5</sub> o in the case of intraperitoneal administration to white mice ranges from 192 to 597 mg/kg (depending on the character of the compound) (see Table 3). Compound VI, the MSC of which is 610 µg/ml vis-a-vis an LD<sub>50</sub> of 1240 mg/kg, constitutes an exception.

The activity, upon the whole, increases on passing to the free  $N-[\beta-(p-substituted ben-zoyl)ethyl]amino acids (X-XXIII); a decrease in toxicity is also observed. For the majority$ 

of compounds of this series the MSC is equal to or less than 2500  $\mu$ g/ml (Table 4), and the LD<sub>50</sub> ranges from 310 to 840 mg/kg (see Table 3). All of the p-chloro derivatives of the amino ketones (X, XII, XIII, XV, XVII, XVIII, XX, and XXII) are more active than the unsubstituted analogs (compare XI and XII, XIV and XV, XVI and XVII, XIX and XX, and XXI and XXIII); this cannot be ascribed to their toxicity. In particular, N-[ $\beta$ -(p-chlorobenzoyl)ethyl]-L-leucine (XII) and L-glycylglycine (XX) (LD<sub>50</sub> 840 and 1015 kg/kg, respectively) are less toxic than N0( $\beta$ -benzoylethyl) derivatives XI and XIX, which have LD<sub>50</sub> 484 and 520 kg/kg. The  $\beta$ -amino ketones that are derivatives of DL-threonine (XVII), DL-serine (XV), and D-leucine (XII) have pronounced antibacterial activity with respect to *Staphylococcus aureus*: Their MSC ranges from 35 to 70  $\mu$ g/ml (see Table 4). In a study of the antimicrobial activity of these compounds with respect to *B. megatherium*, *Pseudomonas aeruginosa*, and *Enterobact aerogenes* we also discovered activity. The MSC of these compounds range from 30 to 80  $\mu$ g/ml.

As regards the hydrochlorides of the ethyl esters of  $N-[\beta-(p-chlorobenzoyl)ethyl]-DL-$ serine and -DL-valine (VII, VIII), their MSC are 310 and 610 µg/ml, respectively.

In a comparison of the biological properties of the optical isomers in the case of leucine derivatives XII and XIII and tryptophan derivatives XXII and XXIII it was shown that the L forms of the amino ketones are more active than the D forms both with respect to localanesthetizing and antibacterial activity (see Tables 3 and 4).

Thus among N-[ $\beta$ -(p-substituted benzoyl)ethyl] amino acids we have discovered lowtoxicity compounds that have antibacterial, local-anesthetizing, and opiate-antagonistic properties. The results obtained provide evidence for the promising character of further study of  $\beta$ -amino ketones that are amino acid derivatives as compounds that have antibacterial and local-anesthetizing activity.

### LITERATURE CITED

A. G. Agababyan, G. A. Gevorgyan, and O. L. Mndzhoyan, Usp. Khim., No. 4, 678-695 (1982).
 A. G. Agababyan, G. A. Gevorgyan, et al., Khim.-farm. Zh., No. 9, 73-77 (1977).

- 3. A. G. Agababyan, G. A. Gevorgyan, L. P. Podol'skaya, et al., ibid., No. 1, 16-20 (1980).
- 4. A. G. Agababyan, G. A. Gevorgyan, A. E. Tumadzhyan, et al., ibid., No. 3, 303-308 (1983).
- 5. N. A. Apoyan, Biol. Zh. Arm., 36, No. 6, 216-219 (1983).
- 6. M. L. Belen'kii, Elements of the Quantitative Evaluation of Pharmacological Effects [in Russian], 2nd edn., Leningrad (1963).
- 7. E. V. Vlasenko, Biol. Zh. Arm., 29, No. 4, 95-97 (1976).
- G. N. Pershin (editor), Methods of Experimental Chemotherapy [in Russian], Moscow (1952), pp. 467-468.
- 9. S. N. Milovanova, in: Methods of Experimental Chemotherapy (G. N. Pershin, ed.), Moscow (1971), pp. 103-104.
- 10. A. K. Sangailo, in: The Physiology of Pain [in Russian], Sverdlovsk (1962), pp. 9-11.
- 11. H. Hamilton and B. Westfall, J. Pharmacol. Exp. Ther., 94, No. 3, 299 (1948).
- 12. K. Meier, W. Schuller, P. Dessaules, et al., Experientia, 6, 469-474 (1950).
- 13. I. Regnier, Compt. Rend. Acad. Sci. (Paris), 177, 558 (1923).