The η⁵-C₉H₁₁Fe(CO)₂(isobutylene)⁺BF₄ Complex as a Protecting Group of Carbon-Carbon Double Bonds

Yasutaka Ishii,* Takashi Kagayama, Akihiro Inada, and Masaya Ogawa*

Department of Applied Chemistry, Faculty of Engineering, Kansai University, Senriyama, Suita, Osaka 564

(Received February 12, 1983)

Synopsis. η^5 -C₉H₁₁Fe(CO)₂(isobutylene)⁺BF₄⁻ (6), [Fpi(isobutylene)]⁺BF₄⁻, was prepared and used as a protecting group of carbon–carbon double bonds. The complex 6 undergoes ligand exchange with a variety of diolefins to give Fpi(diolefin)⁺BF₄⁻ complexes, whose subsequent hydrogenations on Pd/C give olefins hydrogenated regioselectively.

The dicarbonyl η^5 -cyclopentadienyliron cation moiety, η^5 -C₅H₅Fe(CO)₂+ (Fp⁺), serves as a good protecting group for the carbon–carbon double bond of olefins.^{1,2)} The Fp(isobutylene)+BF₄- complex (1), which is readily available from the Fp dimer, undergoes ligand exchange with olefins under mild conditions to give Fp(olefin)+-BF₄- (2) (Eq. 1).

$$\operatorname{\mathsf{Fp}}(-1)^{+}\operatorname{\mathsf{BF}}_{4}^{-} + \operatorname{\mathsf{olefin}} \longrightarrow \operatorname{\mathsf{Fp}}(\operatorname{\mathsf{olefin}})^{+}\operatorname{\mathsf{BF}}_{4}^{-} + \text{1}$$

In a previous paper, we have reported the Fe(CO)₅ catalyzed disproportionation of *cis*-bicyclo[4.3.0]nona-3,7-diene (3) to bicyclo[4.3.0]non-1(6)-ene (4) and indan (Eq. 2).³⁾ In the course of the reaction, it was found that tetracarbonylbis(η^5 -4,5,6,7-tetrahydroindenyl)diiron (5) (Fpi dimer), which is structurally analogous to the Fp dimer, was formed. The stoichiometric reaction of 3 and Fe(CO)₅ gave 5 in a moderate yield (35—46%).⁴⁾

The Fpi moiety, which is more bulky than the Fp moiety, can be expected to provide a method for protecting the carbon–carbon double bonds. Thus, the Fpi(isobutylene)+BF₄- complex (6) was prepared and used as a protecting group of the double bonds for various diolefins.

The preparation of **6** from **5** was achieved in 60—65% yields by a modification of the Rosenblum method⁵⁾ for the synthesis of **1**. Complex **6** reacted with a variety of diolefin **3**, **7**—**11** in 1,2-dichloroethane to afford Fpi(diolefin)+BF₄- complexes **12**—**18** (Scheme 1). The yields of the Fpi(diolefin)+BF₄- complexes were preferable to those of the ligand exchange between Fp(isobutylene)+BF₄- and diolefins¹⁾ (Scheme 1). The ¹³C NMR chemical shifts of these complexes are listed in Tables 1 and 2.

The ligand exchange of **6** with bicyclo[2.2.1]hepta-2,5-diene **7** gave **12** in a 91% yield. In the ¹³C NMR spectrum of **12**, the signal of the α -carbons (C-2 and C-3) shifted about 55 ppm upfield compared with those of **7**.6) The *exo*-configuration of the Fpi⁺ moiety in **12** was confirmed on the basis of the upfield shift (*ca*. 18 ppm) of the bridge carbon (C-7) attributable to the steric compression effect. The exchange of **6** with *endo*-tricyclo[5.2.1.0^{2,6}]deca-3,8-diene **8** proceeded

regio- and stereoselectively, affording 13 in an 83% yield. A similar steric effect by the Fpi⁺ moiety was observed at the bridge carbon (C-10) of 13. This shows that the configuration of the Fpi⁺ group in 13 has the *exo*-orientation.

The reaction of 6 with 3 gave exclusively complex 14, in which the Fpi⁺ group is probably located in an anti-direction. If the Fpi⁺ moiety in 14 is situated in a sterically more crowded *syn*-geometry, obvious upfield shifts due to the steric compression effect must be observed in ¹³C resonances of the fused cyclohexene ring.

The hydrogenation of 14 on Pd/C, followed by treatment with NaI, gave olefin (19) (Eq. 3).

14
$$\frac{1) H_2 \cdot R_1/c}{2) \text{ Nal}} \rightarrow (3)$$

The regiospecific formation of 14 is noteworthy, since the reactivities of the two double bonds in 3 closely resemble each other.

In the exchange of 6 with 4-vinyl-1-cyclohexene (9), the ¹³C NMR spectra of resulting Fpi⁺ complexes showed two pairs of signals having approximately equal intensities. Although the complexes could not be separated into components, from a consideration of their NMR spectra it was found that the exchange occurred regioselectively, but not stereoselectively, at the vinyl-double bond to give a stereoisomeric mixture of 15 and 16 whose subsequent hydrogenations led to the same olefin (20) (Eq. 4).

15 and 16
$$\frac{1) \text{ H}_2 \cdot \text{Pd/C}}{2) \text{ Nal}}$$
 (4)

Previously, Nicholas¹⁾ has reported that the exchange of 1 with 5-vinylbicyclo[2.2.1]hept-2-ene (10)⁸⁾ affords two regioisomers in which the Fp⁺ group is coordinated to the vinyl- and bicyclo[2.2.1]heptenyl double bonds in a ratio of 65:35. However, the ligand exchange of 6 with 10 occurred preferentially at the bicyclo-[2.2.1]heptenyl double bond to give the Fpi complex 17.9)

TABLE 1.	¹³ C NMR	CHEMICAL	SHIFTS	of Fp	i(diolefin)+BF ₄ -	COMPLEXES
----------	---------------------	----------	--------	-------	------------	---------------------	-----------

Complex	C-1	C-2	C-3	C-4	C- 5	C-6	C-7	C-8	C-9	C-10
12	47.9	86.3	86.3	47.9	143.8	143.8	56.2			
13	43.4ª)	54.3	129.6	132.5	31.1	41.1	44.5ª)	75.8	81.0	38.6
14	30.0	23.9	124.8a)	125.1a)	27.2	38.6	85.5	80.8	35.9	
15 1 10	126.5	124.8	32.8	39.2	30.7	24.2	94.0	52.0		
15 and 16	126.5	124.8	32.8	39.2	29.7	24.2	93.4	52.0		
17	46.2	75.8	79.0	40.9	31.5	42.8	37.1	139.0	114.8	
18	123.1	140.9	89.1	49.2	15.5					

a) An alternative assignment is also possible in each line.

Table 2. ¹³C NMR chemical shifts of the Fpi-moiety^{a)}

Complex	C-1	C-2	C -3	C-4	C- 5	C -6	C-7	C-8	C-9	C-10 or C-11	
12	108.0	21.2b)	20.8b)	20.8b)	21.2 ^{b)}	108.0	84.4	90.6	84.4	211.7	211.7
13	108.0	21.1b)	20.7b)	20.7b)	21.1 ^{b)}	108.0	83.9c)	90.4	84.3c)	212.0	211.7
14	108.1	$21.3^{b)}$	20.9b)	$20.9^{b)}$	21.3b)	108.1	83.8c)	91.1	84.1c)	212.0	211.8
15 and 16	108.7	21.6b)	20.7b)	$20.7^{b)}$	$21.6^{b)}$	108.7	85.3	90.1	85.3	211.5	209.2
	107.4	20.7	20.7	20.7	20.7	107.4	$81.6^{b)}$	90.1	82.3b)	211.5	209.2
17	107.9	21.2 ^{b)}	$20.8^{b)}$	$20.8^{b)}$	21.2b)	107.9	84.2 ^{c)}	90.9	84.2c)	211.7	211.6
18	108.2	21.3^{b}	$20.7^{b)}$	$20.7^{b)}$	$21.3^{b)}$	107.8	83.6c)	90.4	84.0c)	210.9	210.6

b, c) An alternative assignment is also possible in each line.

The reaction of 6 with acyclic diene, isoprene 11, took place regioselectively at the less hindered double bond to form Complex 18 in a 95% yield.

These results suggest that Complex 6, which was readily prepared from the Fpi-dimer, serves as a good protecting group of carbon-carbon double bonds, especially toward the diolefins with a closely analogous reactivity. Furthermore, 6 shows a higher regioselectivity than Complex 1 in the exchange with certain diolefins.

Experimental

The IR spectra were taken with a JASCO-A202 spectrometer. The 1 H and 13 C NMR spectra were recorded with a JEOL PMX-60 and a JNM-PS-100 FT-NMR spectrometer respectively. The chemical shifts were obtained in a nitromethane- d_3 solution, containing TMS as the internal standard.

Materials. The Fpi dimer (5) was obtained in a manner similar to that described above.³⁾

Fpi(isobutylene)+BF₄⁻ (**6**) was prepared by a modification of Rosenblum procedure.⁵⁾ To a solution of Fpi(η^{1} -2-methyl-2-propenyl) (33 mmol), which has been prepared from FpiNa and 2-methyl-2-propenyl chloride,¹⁰⁾ we added, drop by drop, 1 equiv of 42% HBF₄ in acetone (1:1) at 0 °C. Stirring was continued at 0 °C for 1 h. At the end of this time, 20 cm³ of acetone was added, and then the solution was poured to a large amount of ether (500 cm³). The orange crystals thus precipitated were collected and recrystallized from dichloromethane to give pure **6** in 60—65% overall yields; ¹H NMR (CD₃NO₂) δ =1.9 (m, 10H), 2.5 (m, 4H), 3.7 (s, 2H), 5.2 (s, 3H); ¹³C NMR (CD₃NO₂) δ =21.4(t), 21.9(t), 27.7(q), 55.1(t), 84.0(d), 91.3(d), 110.1 (s), 122.7(s), 211.0(s); IR(Nujol) 3400, 2050, 1990, 1060, 1010 cm⁻¹.

Ligand Exchange of 6 with Diolefins. To a solution of diolefin (60 mmol) in 1,2-dichloroethane (200 cm³) we added 6 (6 mmol) in 1,2-dichloroethane (80 cm³). Stirring was

continued at 65—70 °C for 10—15 min. After the subsequent removal of the solvent and unreacted diolefin in vacuo, the residue was dissolved in a minimum amount of acetone and filtered off. The filtrate was poured into $500 \, \mathrm{cm}^3$ of ether to precipitate $\mathrm{Fpi}(\mathrm{diolefin})^+\mathrm{BF_4}^-$ complexes in 60—95% yields.

Hydrogenation of Fpi(diolefin)+BF₄- Complexes and Liberation of the Fpi Moiety from Complexes. The hydrogenations of **14—16** were accomplished according to the Nicholas procedure.²⁾ The hydrogenated complexes (0.8 mmol) were dissolved in nitromethane- d_3 (2 cm³) containing sodium iodide (1.0 mmol), after with the mixture was refluxed for 3 h. After centrifugation, the supernatant was subjected to NMR measurements.

References

- 1) P. R. Boyle and K. M. Nicholas, J. Org. Chem., 40, 2682 (1975).
 - 2) K. M. Nicholas, J. Am. Chem. Soc., 97, 3254 (1975).
- 3) T. Kagayama, S. Okabayashi, Y. Amaike, Y. Matsukawa, Y. Ishii, and M. Ogawa, *Bull. Chem. Soc. Jpn.*, 55, 2297 (1982).
- 4) Complex 5 was synthesized from spirononadiene and Fe(CO)₅ in a 30% yield: B. F. Hallam and P. L. Pauson, J. Chem. Soc., 1958, 646.
- 5) W. P. Giering and M. Rosenblum, J. Chem. Soc., Chem. Commun., 1971, 441.
- 6) A similar upfield shift was observed in the ethyleneligand carbons of Fp(ethylene)+BF₄-: J. M. Fallor and B. Y. Johnson, J. Organomet. Chem., 88, 101 (1975).
- 7) The ligand exchange of 1 with 9 has been attempted by Nicholas, 1) but the formation of stereoisomeric Fp-(diolefin) +BF₄- complexes has not been described.
- 8) Compound 10 was a mixture of endo and exo vinyl derivatives (75:25).
- 9) A small amount of some other Fpi(diolefin)+BF₄-complexes were produced together with 17, but no components other than 17 could be identified.
- 10) W. P. Giering and M. Rosenblum, *J. Organomet. Chem.*, **25**, C71 (1970).